|
import os |
|
|
|
import cv2 |
|
import torch |
|
from img_utils import img2tensor, tensor2img |
|
from utils import load_file_from_url |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from torchvision.transforms.functional import normalize |
|
|
|
from RestoreFormer_arch import VQVAEGANMultiHeadTransformer |
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
|
|
class RestoreFormer(): |
|
"""Helper for restoration with RestoreFormer. |
|
|
|
It will detect and crop faces, and then resize the faces to 512x512. |
|
RestoreFormer is used to restored the resized faces. |
|
The background is upsampled with the bg_upsampler. |
|
Finally, the faces will be pasted back to the upsample background image. |
|
|
|
Args: |
|
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically). |
|
upscale (float): The upscale of the final output. Default: 2. |
|
arch (str): The RestoreFormer architecture. Option: RestoreFormer | RestoreFormer++. Default: RestoreFormer++. |
|
bg_upsampler (nn.Module): The upsampler for the background. Default: None. |
|
""" |
|
|
|
def __init__(self, model_path, upscale=2, arch='RestoreFromerPlusPlus', bg_upsampler=None, device=None): |
|
self.upscale = upscale |
|
self.bg_upsampler = bg_upsampler |
|
self.arch = arch |
|
|
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device |
|
|
|
if arch == 'RestoreFormer': |
|
self.RF = VQVAEGANMultiHeadTransformer(head_size = 8, ex_multi_scale_num = 0) |
|
elif arch == 'RestoreFormer++': |
|
self.RF = VQVAEGANMultiHeadTransformer(head_size = 4, ex_multi_scale_num = 1) |
|
else: |
|
raise NotImplementedError(f'Not support arch: {arch}.') |
|
|
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=self.device, |
|
model_rootpath=None) |
|
|
|
if model_path.startswith('https://'): |
|
model_path = load_file_from_url( |
|
url=model_path, model_dir=os.path.join(ROOT_DIR, 'experiments/weights'), progress=True, file_name=None) |
|
loadnet = torch.load(model_path) |
|
|
|
strict=False |
|
weights = loadnet['state_dict'] |
|
new_weights = {} |
|
for k, v in weights.items(): |
|
if k.startswith('vqvae.'): |
|
k = k.replace('vqvae.', '') |
|
new_weights[k] = v |
|
self.RF.load_state_dict(new_weights, strict=strict) |
|
|
|
self.RF.eval() |
|
self.RF = self.RF.to(self.device) |
|
|
|
@torch.no_grad() |
|
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True): |
|
self.face_helper.clean_all() |
|
|
|
if has_aligned: |
|
img = cv2.resize(img, (512, 512)) |
|
self.face_helper.cropped_faces = [img] |
|
else: |
|
self.face_helper.read_image(img) |
|
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) |
|
|
|
|
|
|
|
self.face_helper.align_warp_face() |
|
|
|
|
|
for cropped_face in self.face_helper.cropped_faces: |
|
|
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) |
|
|
|
try: |
|
output = self.RF(cropped_face_t)[0] |
|
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)) |
|
except RuntimeError as error: |
|
print(f'\tFailed inference for RestoreFormer: {error}.') |
|
restored_face = cropped_face |
|
|
|
restored_face = restored_face.astype('uint8') |
|
self.face_helper.add_restored_face(restored_face) |
|
|
|
if not has_aligned and paste_back: |
|
|
|
if self.bg_upsampler is not None: |
|
|
|
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0] |
|
else: |
|
bg_img = None |
|
|
|
self.face_helper.get_inverse_affine(None) |
|
|
|
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img) |
|
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img |
|
else: |
|
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None |
|
|