yolov5_tracking / trackers /strong_sort /reid_multibackend.py
xfys's picture
Upload 645 files
47af768
raw
history blame
11.3 kB
import torch.nn as nn
import torch
from pathlib import Path
import numpy as np
from itertools import islice
import torchvision.transforms as transforms
import cv2
import sys
import torchvision.transforms as T
from collections import OrderedDict, namedtuple
import gdown
from os.path import exists as file_exists
from yolov5.utils.general import LOGGER, check_version, check_requirements
from trackers.strong_sort.deep.reid_model_factory import (show_downloadeable_models, get_model_url, get_model_name,
download_url, load_pretrained_weights)
from trackers.strong_sort.deep.models import build_model
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
# Check file(s) for acceptable suffix
if file and suffix:
if isinstance(suffix, str):
suffix = [suffix]
for f in file if isinstance(file, (list, tuple)) else [file]:
s = Path(f).suffix.lower() # file suffix
if len(s):
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
class ReIDDetectMultiBackend(nn.Module):
# ReID models MultiBackend class for python inference on various backends
def __init__(self, weights='osnet_x0_25_msmt17.pt', device=torch.device('cpu'), fp16=False):
super().__init__()
w = weights[0] if isinstance(weights, list) else weights
self.pt, self.jit, self.onnx, self.xml, self.engine, self.coreml, self.saved_model, \
self.pb, self.tflite, self.edgetpu, self.tfjs, self.paddle = self.model_type(w) # get backend
self.fp16 = fp16
self.fp16 &= self.pt or self.jit or self.engine # FP16
# Build transform functions
self.device = device
self.image_size=(256, 128)
self.pixel_mean=[0.485, 0.456, 0.406]
self.pixel_std=[0.229, 0.224, 0.225]
self.transforms = []
self.transforms += [T.Resize(self.image_size)]
self.transforms += [T.ToTensor()]
self.transforms += [T.Normalize(mean=self.pixel_mean, std=self.pixel_std)]
self.preprocess = T.Compose(self.transforms)
self.to_pil = T.ToPILImage()
model_name = get_model_name(w)
if w.suffix == '.pt':
model_url = get_model_url(w)
if not file_exists(w) and model_url is not None:
gdown.download(model_url, str(w), quiet=False)
elif file_exists(w):
pass
else:
print(f'No URL associated to the chosen StrongSORT weights ({w}). Choose between:')
show_downloadeable_models()
exit()
# Build model
self.model = build_model(
model_name,
num_classes=1,
pretrained=not (w and w.is_file()),
use_gpu=device
)
if self.pt: # PyTorch
# populate model arch with weights
if w and w.is_file() and w.suffix == '.pt':
load_pretrained_weights(self.model, w)
self.model.to(device).eval()
self.model.half() if self.fp16 else self.model.float()
elif self.jit:
LOGGER.info(f'Loading {w} for TorchScript inference...')
self.model = torch.jit.load(w)
self.model.half() if self.fp16 else self.model.float()
elif self.onnx: # ONNX Runtime
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
cuda = torch.cuda.is_available() and device.type != 'cpu'
#check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
import onnxruntime
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
self.session = onnxruntime.InferenceSession(str(w), providers=providers)
elif self.engine: # TensorRT
LOGGER.info(f'Loading {w} for TensorRT inference...')
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
if device.type == 'cpu':
device = torch.device('cuda:0')
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.INFO)
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
self.model_ = runtime.deserialize_cuda_engine(f.read())
self.context = self.model_.create_execution_context()
self.bindings = OrderedDict()
self.fp16 = False # default updated below
dynamic = False
for index in range(self.model_.num_bindings):
name = self.model_.get_binding_name(index)
dtype = trt.nptype(self.model_.get_binding_dtype(index))
if self.model_.binding_is_input(index):
if -1 in tuple(self.model_.get_binding_shape(index)): # dynamic
dynamic = True
self.context.set_binding_shape(index, tuple(self.model_.get_profile_shape(0, index)[2]))
if dtype == np.float16:
self.fp16 = True
shape = tuple(self.context.get_binding_shape(index))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
self.bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())
batch_size = self.bindings['images'].shape[0] # if dynamic, this is instead max batch size
elif self.xml: # OpenVINO
LOGGER.info(f'Loading {w} for OpenVINO inference...')
check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
from openvino.runtime import Core, Layout, get_batch
ie = Core()
if not Path(w).is_file(): # if not *.xml
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
if network.get_parameters()[0].get_layout().empty:
network.get_parameters()[0].set_layout(Layout("NCWH"))
batch_dim = get_batch(network)
if batch_dim.is_static:
batch_size = batch_dim.get_length()
self.executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
self.output_layer = next(iter(self.executable_network.outputs))
elif self.tflite:
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
self.interpreter = tf.lite.Interpreter(model_path=w)
self.interpreter.allocate_tensors()
# Get input and output tensors.
self.input_details = self.interpreter.get_input_details()
self.output_details = self.interpreter.get_output_details()
# Test model on random input data.
input_data = np.array(np.random.random_sample((1,256,128,3)), dtype=np.float32)
self.interpreter.set_tensor(self.input_details[0]['index'], input_data)
self.interpreter.invoke()
# The function `get_tensor()` returns a copy of the tensor data.
output_data = self.interpreter.get_tensor(self.output_details[0]['index'])
else:
print('This model framework is not supported yet!')
exit()
@staticmethod
def model_type(p='path/to/model.pt'):
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
from export import export_formats
sf = list(export_formats().Suffix) # export suffixes
check_suffix(p, sf) # checks
types = [s in Path(p).name for s in sf]
types[8] &= not types[9] # tflite &= not edgetpu
return types
def _preprocess(self, im_batch):
images = []
for element in im_batch:
image = self.to_pil(element)
image = self.preprocess(image)
images.append(image)
images = torch.stack(images, dim=0)
images = images.to(self.device)
return images
def forward(self, im_batch):
# preprocess batch
im_batch = self._preprocess(im_batch)
# batch to half
if self.fp16 and im_batch.dtype != torch.float16:
im_batch = im_batch.half()
# batch processing
features = []
if self.pt:
features = self.model(im_batch)
elif self.jit: # TorchScript
features = self.model(im_batch)
elif self.onnx: # ONNX Runtime
im_batch = im_batch.cpu().numpy() # torch to numpy
features = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im_batch})[0]
elif self.engine: # TensorRT
if True and im_batch.shape != self.bindings['images'].shape:
i_in, i_out = (self.model_.get_binding_index(x) for x in ('images', 'output'))
self.context.set_binding_shape(i_in, im_batch.shape) # reshape if dynamic
self.bindings['images'] = self.bindings['images']._replace(shape=im_batch.shape)
self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out)))
s = self.bindings['images'].shape
assert im_batch.shape == s, f"input size {im_batch.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs['images'] = int(im_batch.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
features = self.bindings['output'].data
elif self.xml: # OpenVINO
im_batch = im_batch.cpu().numpy() # FP32
features = self.executable_network([im_batch])[self.output_layer]
else:
print('Framework not supported at the moment, we are working on it...')
exit()
if isinstance(features, (list, tuple)):
return self.from_numpy(features[0]) if len(features) == 1 else [self.from_numpy(x) for x in features]
else:
return self.from_numpy(features)
def from_numpy(self, x):
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
def warmup(self, imgsz=[(256, 128, 3)]):
# Warmup model by running inference once
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
if any(warmup_types) and self.device.type != 'cpu':
im = [np.empty(*imgsz).astype(np.uint8)] # input
for _ in range(2 if self.jit else 1): #
self.forward(im) # warmup