Spaces:
Build error
Build error
import os | |
import csv | |
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
from ._base_dataset import _BaseDataset | |
from .. import utils | |
from .. import _timing | |
from ..utils import TrackEvalException | |
class KittiMOTS(_BaseDataset): | |
"""Dataset class for KITTI MOTS tracking""" | |
def get_default_dataset_config(): | |
"""Default class config values""" | |
code_path = utils.get_code_path() | |
default_config = { | |
'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_mots_val'), # Location of GT data | |
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_mots_val'), # Trackers location | |
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) | |
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) | |
'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian'] | |
'SPLIT_TO_EVAL': 'val', # Valid: 'training', 'val' | |
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped | |
'PRINT_CONFIG': True, # Whether to print current config | |
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER | |
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER | |
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL | |
'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER) | |
'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/split_to_eval.seqmap) | |
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps | |
'GT_LOC_FORMAT': '{gt_folder}/label_02/{seq}.txt', # format of gt localization | |
} | |
return default_config | |
def __init__(self, config=None): | |
"""Initialise dataset, checking that all required files are present""" | |
super().__init__() | |
# Fill non-given config values with defaults | |
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) | |
self.gt_fol = self.config['GT_FOLDER'] | |
self.tracker_fol = self.config['TRACKERS_FOLDER'] | |
self.split_to_eval = self.config['SPLIT_TO_EVAL'] | |
self.should_classes_combine = False | |
self.use_super_categories = False | |
self.data_is_zipped = self.config['INPUT_AS_ZIP'] | |
self.output_fol = self.config['OUTPUT_FOLDER'] | |
if self.output_fol is None: | |
self.output_fol = self.tracker_fol | |
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] | |
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] | |
# Get classes to eval | |
self.valid_classes = ['car', 'pedestrian'] | |
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None | |
for cls in self.config['CLASSES_TO_EVAL']] | |
if not all(self.class_list): | |
raise TrackEvalException('Attempted to evaluate an invalid class. ' | |
'Only classes [car, pedestrian] are valid.') | |
self.class_name_to_class_id = {'car': '1', 'pedestrian': '2', 'ignore': '10'} | |
# Get sequences to eval and check gt files exist | |
self.seq_list, self.seq_lengths = self._get_seq_info() | |
if len(self.seq_list) < 1: | |
raise TrackEvalException('No sequences are selected to be evaluated.') | |
# Check gt files exist | |
for seq in self.seq_list: | |
if not self.data_is_zipped: | |
curr_file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq) | |
if not os.path.isfile(curr_file): | |
print('GT file not found ' + curr_file) | |
raise TrackEvalException('GT file not found for sequence: ' + seq) | |
if self.data_is_zipped: | |
curr_file = os.path.join(self.gt_fol, 'data.zip') | |
if not os.path.isfile(curr_file): | |
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) | |
# Get trackers to eval | |
if self.config['TRACKERS_TO_EVAL'] is None: | |
self.tracker_list = os.listdir(self.tracker_fol) | |
else: | |
self.tracker_list = self.config['TRACKERS_TO_EVAL'] | |
if self.config['TRACKER_DISPLAY_NAMES'] is None: | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) | |
elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( | |
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) | |
else: | |
raise TrackEvalException('List of tracker files and tracker display names do not match.') | |
for tracker in self.tracker_list: | |
if self.data_is_zipped: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') | |
if not os.path.isfile(curr_file): | |
print('Tracker file not found: ' + curr_file) | |
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file)) | |
else: | |
for seq in self.seq_list: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') | |
if not os.path.isfile(curr_file): | |
print('Tracker file not found: ' + curr_file) | |
raise TrackEvalException( | |
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename( | |
curr_file)) | |
def get_display_name(self, tracker): | |
return self.tracker_to_disp[tracker] | |
def _get_seq_info(self): | |
seq_list = [] | |
seq_lengths = {} | |
seqmap_name = 'evaluate_mots.seqmap.' + self.config['SPLIT_TO_EVAL'] | |
if self.config["SEQ_INFO"]: | |
seq_list = list(self.config["SEQ_INFO"].keys()) | |
seq_lengths = self.config["SEQ_INFO"] | |
else: | |
if self.config["SEQMAP_FILE"]: | |
seqmap_file = self.config["SEQMAP_FILE"] | |
else: | |
if self.config["SEQMAP_FOLDER"] is None: | |
seqmap_file = os.path.join(self.config['GT_FOLDER'], seqmap_name) | |
else: | |
seqmap_file = os.path.join(self.config["SEQMAP_FOLDER"], seqmap_name) | |
if not os.path.isfile(seqmap_file): | |
print('no seqmap found: ' + seqmap_file) | |
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file)) | |
with open(seqmap_file) as fp: | |
reader = csv.reader(fp) | |
for i, _ in enumerate(reader): | |
dialect = csv.Sniffer().sniff(fp.read(1024)) | |
fp.seek(0) | |
reader = csv.reader(fp, dialect) | |
for row in reader: | |
if len(row) >= 4: | |
seq = "%04d" % int(row[0]) | |
seq_list.append(seq) | |
seq_lengths[seq] = int(row[3]) + 1 | |
return seq_list, seq_lengths | |
def _load_raw_file(self, tracker, seq, is_gt): | |
"""Load a file (gt or tracker) in the KITTI MOTS format | |
If is_gt, this returns a dict which contains the fields: | |
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets]: list (for each timestep) of lists of detections. | |
[gt_ignore_region]: list (for each timestep) of masks for the ignore regions | |
if not is_gt, this returns a dict which contains the fields: | |
[tracker_ids, tracker_classes] : list (for each timestep) of 1D NDArrays (for each det). | |
[tracker_dets]: list (for each timestep) of lists of detections. | |
""" | |
# Only loaded when run to reduce minimum requirements | |
from pycocotools import mask as mask_utils | |
# File location | |
if self.data_is_zipped: | |
if is_gt: | |
zip_file = os.path.join(self.gt_fol, 'data.zip') | |
else: | |
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') | |
file = seq + '.txt' | |
else: | |
zip_file = None | |
if is_gt: | |
file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq) | |
else: | |
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') | |
# Ignore regions | |
if is_gt: | |
crowd_ignore_filter = {2: ['10']} | |
else: | |
crowd_ignore_filter = None | |
# Load raw data from text file | |
read_data, ignore_data = self._load_simple_text_file(file, crowd_ignore_filter=crowd_ignore_filter, | |
is_zipped=self.data_is_zipped, zip_file=zip_file, | |
force_delimiters=' ') | |
# Convert data to required format | |
num_timesteps = self.seq_lengths[seq] | |
data_keys = ['ids', 'classes', 'dets'] | |
if is_gt: | |
data_keys += ['gt_ignore_region'] | |
raw_data = {key: [None] * num_timesteps for key in data_keys} | |
# Check for any extra time keys | |
current_time_keys = [str(t) for t in range(num_timesteps)] | |
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys] | |
if len(extra_time_keys) > 0: | |
if is_gt: | |
text = 'Ground-truth' | |
else: | |
text = 'Tracking' | |
raise TrackEvalException( | |
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join( | |
[str(x) + ', ' for x in extra_time_keys])) | |
for t in range(num_timesteps): | |
time_key = str(t) | |
# list to collect all masks of a timestep to check for overlapping areas | |
all_masks = [] | |
if time_key in read_data.keys(): | |
try: | |
raw_data['dets'][t] = [{'size': [int(region[3]), int(region[4])], | |
'counts': region[5].encode(encoding='UTF-8')} | |
for region in read_data[time_key]] | |
raw_data['ids'][t] = np.atleast_1d([region[1] for region in read_data[time_key]]).astype(int) | |
raw_data['classes'][t] = np.atleast_1d([region[2] for region in read_data[time_key]]).astype(int) | |
all_masks += raw_data['dets'][t] | |
except IndexError: | |
self._raise_index_error(is_gt, tracker, seq) | |
except ValueError: | |
self._raise_value_error(is_gt, tracker, seq) | |
else: | |
raw_data['dets'][t] = [] | |
raw_data['ids'][t] = np.empty(0).astype(int) | |
raw_data['classes'][t] = np.empty(0).astype(int) | |
if is_gt: | |
if time_key in ignore_data.keys(): | |
try: | |
time_ignore = [{'size': [int(region[3]), int(region[4])], | |
'counts': region[5].encode(encoding='UTF-8')} | |
for region in ignore_data[time_key]] | |
raw_data['gt_ignore_region'][t] = mask_utils.merge([mask for mask in time_ignore], | |
intersect=False) | |
all_masks += [raw_data['gt_ignore_region'][t]] | |
except IndexError: | |
self._raise_index_error(is_gt, tracker, seq) | |
except ValueError: | |
self._raise_value_error(is_gt, tracker, seq) | |
else: | |
raw_data['gt_ignore_region'][t] = mask_utils.merge([], intersect=False) | |
# check for overlapping masks | |
if all_masks: | |
masks_merged = all_masks[0] | |
for mask in all_masks[1:]: | |
if mask_utils.area(mask_utils.merge([masks_merged, mask], intersect=True)) != 0.0: | |
raise TrackEvalException( | |
'Tracker has overlapping masks. Tracker: ' + tracker + ' Seq: ' + seq + ' Timestep: ' + str( | |
t)) | |
masks_merged = mask_utils.merge([masks_merged, mask], intersect=False) | |
if is_gt: | |
key_map = {'ids': 'gt_ids', | |
'classes': 'gt_classes', | |
'dets': 'gt_dets'} | |
else: | |
key_map = {'ids': 'tracker_ids', | |
'classes': 'tracker_classes', | |
'dets': 'tracker_dets'} | |
for k, v in key_map.items(): | |
raw_data[v] = raw_data.pop(k) | |
raw_data["num_timesteps"] = num_timesteps | |
raw_data['seq'] = seq | |
return raw_data | |
def get_preprocessed_seq_data(self, raw_data, cls): | |
""" Preprocess data for a single sequence for a single class ready for evaluation. | |
Inputs: | |
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). | |
- cls is the class to be evaluated. | |
Outputs: | |
- data is a dict containing all of the information that metrics need to perform evaluation. | |
It contains the following fields: | |
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. | |
[gt_ids, tracker_ids]: list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, tracker_dets]: list (for each timestep) of lists of detection masks. | |
[similarity_scores]: list (for each timestep) of 2D NDArrays. | |
Notes: | |
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. | |
1) Extract only detections relevant for the class to be evaluated (including distractor detections). | |
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a | |
distractor class, or otherwise marked as to be removed. | |
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain | |
other criteria (e.g. are too small). | |
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. | |
After the above preprocessing steps, this function also calculates the number of gt and tracker detections | |
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are | |
unique within each timestep. | |
KITTI MOTS: | |
In KITTI MOTS, the 4 preproc steps are as follow: | |
1) There are two classes (car and pedestrian) which are evaluated separately. | |
2) There are no ground truth detections marked as to be removed/distractor classes. | |
Therefore also no matched tracker detections are removed. | |
3) Ignore regions are used to remove unmatched detections (at least 50% overlap with ignore region). | |
4) There are no ground truth detections (e.g. those of distractor classes) to be removed. | |
""" | |
# Check that input data has unique ids | |
self._check_unique_ids(raw_data) | |
cls_id = int(self.class_name_to_class_id[cls]) | |
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'similarity_scores'] | |
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} | |
unique_gt_ids = [] | |
unique_tracker_ids = [] | |
num_gt_dets = 0 | |
num_tracker_dets = 0 | |
for t in range(raw_data['num_timesteps']): | |
# Only extract relevant dets for this class for preproc and eval (cls) | |
gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id) | |
gt_class_mask = gt_class_mask.astype(np.bool) | |
gt_ids = raw_data['gt_ids'][t][gt_class_mask] | |
gt_dets = [raw_data['gt_dets'][t][ind] for ind in range(len(gt_class_mask)) if gt_class_mask[ind]] | |
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id) | |
tracker_class_mask = tracker_class_mask.astype(np.bool) | |
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask] | |
tracker_dets = [raw_data['tracker_dets'][t][ind] for ind in range(len(tracker_class_mask)) if | |
tracker_class_mask[ind]] | |
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask] | |
# Match tracker and gt dets (with hungarian algorithm) | |
unmatched_indices = np.arange(tracker_ids.shape[0]) | |
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0: | |
matching_scores = similarity_scores.copy() | |
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = -10000 | |
match_rows, match_cols = linear_sum_assignment(-matching_scores) | |
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps | |
match_cols = match_cols[actually_matched_mask] | |
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0) | |
# For unmatched tracker dets, remove those that are greater than 50% within a crowd ignore region. | |
unmatched_tracker_dets = [tracker_dets[i] for i in range(len(tracker_dets)) if i in unmatched_indices] | |
ignore_region = raw_data['gt_ignore_region'][t] | |
intersection_with_ignore_region = self._calculate_mask_ious(unmatched_tracker_dets, [ignore_region], | |
is_encoded=True, do_ioa=True) | |
is_within_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, axis=1) | |
# Apply preprocessing to remove unwanted tracker dets. | |
to_remove_tracker = unmatched_indices[is_within_ignore_region] | |
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) | |
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) | |
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) | |
# Keep all ground truth detections | |
data['gt_ids'][t] = gt_ids | |
data['gt_dets'][t] = gt_dets | |
data['similarity_scores'][t] = similarity_scores | |
unique_gt_ids += list(np.unique(data['gt_ids'][t])) | |
unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) | |
num_tracker_dets += len(data['tracker_ids'][t]) | |
num_gt_dets += len(data['gt_ids'][t]) | |
# Re-label IDs such that there are no empty IDs | |
if len(unique_gt_ids) > 0: | |
unique_gt_ids = np.unique(unique_gt_ids) | |
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) | |
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['gt_ids'][t]) > 0: | |
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) | |
if len(unique_tracker_ids) > 0: | |
unique_tracker_ids = np.unique(unique_tracker_ids) | |
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) | |
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['tracker_ids'][t]) > 0: | |
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) | |
# Record overview statistics. | |
data['num_tracker_dets'] = num_tracker_dets | |
data['num_gt_dets'] = num_gt_dets | |
data['num_tracker_ids'] = len(unique_tracker_ids) | |
data['num_gt_ids'] = len(unique_gt_ids) | |
data['num_timesteps'] = raw_data['num_timesteps'] | |
data['seq'] = raw_data['seq'] | |
data['cls'] = cls | |
# Ensure again that ids are unique per timestep after preproc. | |
self._check_unique_ids(data, after_preproc=True) | |
return data | |
def _calculate_similarities(self, gt_dets_t, tracker_dets_t): | |
similarity_scores = self._calculate_mask_ious(gt_dets_t, tracker_dets_t, is_encoded=True, do_ioa=False) | |
return similarity_scores | |
def _raise_index_error(is_gt, tracker, seq): | |
""" | |
Auxiliary method to raise an evaluation error in case of an index error while reading files. | |
:param is_gt: whether gt or tracker data is read | |
:param tracker: the name of the tracker | |
:param seq: the name of the seq | |
:return: None | |
""" | |
if is_gt: | |
err = 'Cannot load gt data from sequence %s, because there are not enough ' \ | |
'columns in the data.' % seq | |
raise TrackEvalException(err) | |
else: | |
err = 'Cannot load tracker data from tracker %s, sequence %s, because there are not enough ' \ | |
'columns in the data.' % (tracker, seq) | |
raise TrackEvalException(err) | |
def _raise_value_error(is_gt, tracker, seq): | |
""" | |
Auxiliary method to raise an evaluation error in case of an value error while reading files. | |
:param is_gt: whether gt or tracker data is read | |
:param tracker: the name of the tracker | |
:param seq: the name of the seq | |
:return: None | |
""" | |
if is_gt: | |
raise TrackEvalException( | |
'GT data for sequence %s cannot be converted to the right format. Is data corrupted?' % seq) | |
else: | |
raise TrackEvalException( | |
'Tracking data from tracker %s, sequence %s cannot be converted to the right format. ' | |
'Is data corrupted?' % (tracker, seq)) | |