Spaces:
Build error
Build error
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
from ._base_metric import _BaseMetric | |
from .. import _timing | |
from collections import defaultdict | |
from .. import utils | |
class IDEucl(_BaseMetric): | |
"""Class which implements the ID metrics""" | |
def get_default_config(): | |
"""Default class config values""" | |
default_config = { | |
'THRESHOLD': 0.4, # Similarity score threshold required for a IDTP match. 0.4 for IDEucl. | |
'PRINT_CONFIG': True, # Whether to print the config information on init. Default: False. | |
} | |
return default_config | |
def __init__(self, config=None): | |
super().__init__() | |
self.fields = ['IDEucl'] | |
self.float_fields = self.fields | |
self.summary_fields = self.fields | |
# Configuration options: | |
self.config = utils.init_config(config, self.get_default_config(), self.get_name()) | |
self.threshold = float(self.config['THRESHOLD']) | |
def eval_sequence(self, data): | |
"""Calculates IDEucl metrics for all frames""" | |
# Initialise results | |
res = {'IDEucl' : 0} | |
# Return result quickly if tracker or gt sequence is empty | |
if data['num_tracker_dets'] == 0 or data['num_gt_dets'] == 0.: | |
return res | |
data['centroid'] = [] | |
for t, gt_det in enumerate(data['gt_dets']): | |
# import pdb;pdb.set_trace() | |
data['centroid'].append(self._compute_centroid(gt_det)) | |
oid_hid_cent = defaultdict(list) | |
oid_cent = defaultdict(list) | |
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])): | |
matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold) | |
# I hope the orders of ids and boxes are maintained in `data` | |
for ind, gid in enumerate(gt_ids_t): | |
oid_cent[gid].append(data['centroid'][t][ind]) | |
match_idx_gt, match_idx_tracker = np.nonzero(matches_mask) | |
for m_gid, m_tid in zip(match_idx_gt, match_idx_tracker): | |
oid_hid_cent[gt_ids_t[m_gid], tracker_ids_t[m_tid]].append(data['centroid'][t][m_gid]) | |
oid_hid_dist = {k : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_hid_cent.items()} | |
oid_dist = {int(k) : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_cent.items()} | |
unique_oid = np.unique([i[0] for i in oid_hid_dist.keys()]).tolist() | |
unique_hid = np.unique([i[1] for i in oid_hid_dist.keys()]).tolist() | |
o_len = len(unique_oid) | |
h_len = len(unique_hid) | |
dist_matrix = np.zeros((o_len, h_len)) | |
for ((oid, hid), dist) in oid_hid_dist.items(): | |
oid_ind = unique_oid.index(oid) | |
hid_ind = unique_hid.index(hid) | |
dist_matrix[oid_ind, hid_ind] = dist | |
# opt_hyp_dist contains GT ID : max dist covered by track | |
opt_hyp_dist = dict.fromkeys(oid_dist.keys(), 0.) | |
cost_matrix = np.max(dist_matrix) - dist_matrix | |
rows, cols = linear_sum_assignment(cost_matrix) | |
for (row, col) in zip(rows, cols): | |
value = dist_matrix[row, col] | |
opt_hyp_dist[int(unique_oid[row])] = value | |
assert len(opt_hyp_dist.keys()) == len(oid_dist.keys()) | |
hyp_length = np.sum(list(opt_hyp_dist.values())) | |
gt_length = np.sum(list(oid_dist.values())) | |
id_eucl =np.mean([np.divide(a, b, out=np.zeros_like(a), where=b!=0) for a, b in zip(opt_hyp_dist.values(), oid_dist.values())]) | |
res['IDEucl'] = np.divide(hyp_length, gt_length, out=np.zeros_like(hyp_length), where=gt_length!=0) | |
return res | |
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False): | |
"""Combines metrics across all classes by averaging over the class values. | |
If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection. | |
""" | |
res = {} | |
for field in self.float_fields: | |
if ignore_empty_classes: | |
res[field] = np.mean([v[field] for v in all_res.values() | |
if v['IDEucl'] > 0 + np.finfo('float').eps], axis=0) | |
else: | |
res[field] = np.mean([v[field] for v in all_res.values()], axis=0) | |
return res | |
def combine_classes_det_averaged(self, all_res): | |
"""Combines metrics across all classes by averaging over the detection values""" | |
res = {} | |
for field in self.float_fields: | |
res[field] = self._combine_sum(all_res, field) | |
res = self._compute_final_fields(res, len(all_res)) | |
return res | |
def combine_sequences(self, all_res): | |
"""Combines metrics across all sequences""" | |
res = {} | |
for field in self.float_fields: | |
res[field] = self._combine_sum(all_res, field) | |
res = self._compute_final_fields(res, len(all_res)) | |
return res | |
def _compute_centroid(box): | |
box = np.array(box) | |
if len(box.shape) == 1: | |
centroid = (box[0:2] + box[2:4])/2 | |
else: | |
centroid = (box[:, 0:2] + box[:, 2:4])/2 | |
return np.flip(centroid, axis=1) | |
def _compute_final_fields(res, res_len): | |
""" | |
Exists only to match signature with the original Identiy class. | |
""" | |
return {k:v/res_len for k,v in res.items()} | |