xfys's picture
Upload 645 files
47af768
raw
history blame
5.51 kB
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_metric import _BaseMetric
from .. import _timing
from collections import defaultdict
from .. import utils
class IDEucl(_BaseMetric):
"""Class which implements the ID metrics"""
@staticmethod
def get_default_config():
"""Default class config values"""
default_config = {
'THRESHOLD': 0.4, # Similarity score threshold required for a IDTP match. 0.4 for IDEucl.
'PRINT_CONFIG': True, # Whether to print the config information on init. Default: False.
}
return default_config
def __init__(self, config=None):
super().__init__()
self.fields = ['IDEucl']
self.float_fields = self.fields
self.summary_fields = self.fields
# Configuration options:
self.config = utils.init_config(config, self.get_default_config(), self.get_name())
self.threshold = float(self.config['THRESHOLD'])
@_timing.time
def eval_sequence(self, data):
"""Calculates IDEucl metrics for all frames"""
# Initialise results
res = {'IDEucl' : 0}
# Return result quickly if tracker or gt sequence is empty
if data['num_tracker_dets'] == 0 or data['num_gt_dets'] == 0.:
return res
data['centroid'] = []
for t, gt_det in enumerate(data['gt_dets']):
# import pdb;pdb.set_trace()
data['centroid'].append(self._compute_centroid(gt_det))
oid_hid_cent = defaultdict(list)
oid_cent = defaultdict(list)
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold)
# I hope the orders of ids and boxes are maintained in `data`
for ind, gid in enumerate(gt_ids_t):
oid_cent[gid].append(data['centroid'][t][ind])
match_idx_gt, match_idx_tracker = np.nonzero(matches_mask)
for m_gid, m_tid in zip(match_idx_gt, match_idx_tracker):
oid_hid_cent[gt_ids_t[m_gid], tracker_ids_t[m_tid]].append(data['centroid'][t][m_gid])
oid_hid_dist = {k : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_hid_cent.items()}
oid_dist = {int(k) : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_cent.items()}
unique_oid = np.unique([i[0] for i in oid_hid_dist.keys()]).tolist()
unique_hid = np.unique([i[1] for i in oid_hid_dist.keys()]).tolist()
o_len = len(unique_oid)
h_len = len(unique_hid)
dist_matrix = np.zeros((o_len, h_len))
for ((oid, hid), dist) in oid_hid_dist.items():
oid_ind = unique_oid.index(oid)
hid_ind = unique_hid.index(hid)
dist_matrix[oid_ind, hid_ind] = dist
# opt_hyp_dist contains GT ID : max dist covered by track
opt_hyp_dist = dict.fromkeys(oid_dist.keys(), 0.)
cost_matrix = np.max(dist_matrix) - dist_matrix
rows, cols = linear_sum_assignment(cost_matrix)
for (row, col) in zip(rows, cols):
value = dist_matrix[row, col]
opt_hyp_dist[int(unique_oid[row])] = value
assert len(opt_hyp_dist.keys()) == len(oid_dist.keys())
hyp_length = np.sum(list(opt_hyp_dist.values()))
gt_length = np.sum(list(oid_dist.values()))
id_eucl =np.mean([np.divide(a, b, out=np.zeros_like(a), where=b!=0) for a, b in zip(opt_hyp_dist.values(), oid_dist.values())])
res['IDEucl'] = np.divide(hyp_length, gt_length, out=np.zeros_like(hyp_length), where=gt_length!=0)
return res
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False):
"""Combines metrics across all classes by averaging over the class values.
If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection.
"""
res = {}
for field in self.float_fields:
if ignore_empty_classes:
res[field] = np.mean([v[field] for v in all_res.values()
if v['IDEucl'] > 0 + np.finfo('float').eps], axis=0)
else:
res[field] = np.mean([v[field] for v in all_res.values()], axis=0)
return res
def combine_classes_det_averaged(self, all_res):
"""Combines metrics across all classes by averaging over the detection values"""
res = {}
for field in self.float_fields:
res[field] = self._combine_sum(all_res, field)
res = self._compute_final_fields(res, len(all_res))
return res
def combine_sequences(self, all_res):
"""Combines metrics across all sequences"""
res = {}
for field in self.float_fields:
res[field] = self._combine_sum(all_res, field)
res = self._compute_final_fields(res, len(all_res))
return res
@staticmethod
def _compute_centroid(box):
box = np.array(box)
if len(box.shape) == 1:
centroid = (box[0:2] + box[2:4])/2
else:
centroid = (box[:, 0:2] + box[:, 2:4])/2
return np.flip(centroid, axis=1)
@staticmethod
def _compute_final_fields(res, res_len):
"""
Exists only to match signature with the original Identiy class.
"""
return {k:v/res_len for k,v in res.items()}