Spaces:
Build error
Build error
import os | |
os.system("pip install cython_bbox") | |
import gradio as gr | |
import tempfile | |
import track | |
import shutil | |
from pathlib import Path | |
from yolov5 import detect | |
from PIL import Image | |
# 目标检测 | |
def Detect(image, image_type): | |
if image_type == "红外图像": | |
pt = "best.pt" | |
cnf = "FLIR.yaml" | |
else: | |
pt = "yolov5s.pt" | |
cnf = "coco128.yaml" | |
# 创建临时文件夹 | |
temp_path = tempfile.TemporaryDirectory(dir="./") | |
temp_dir = temp_path.name | |
# 临时图片的路径 | |
temp_image_path = os.path.join(temp_dir, f"temp.jpg") | |
# 存储临时图片 | |
img = Image.fromarray(image) | |
img.save(temp_image_path) | |
# 结果图片的存储目录 | |
temp_result_path = os.path.join(temp_dir, "tempresult") | |
# 对临时图片进行检测 | |
detect.run(source=temp_image_path, data=f"test_image/{cnf}", weights=f"weights/{pt}", project=f'./{temp_dir}',name = 'tempresult', hide_conf=False, conf_thres=0.35) | |
# 结果图片的路径 | |
temp_result_path = os.path.join(temp_result_path, os.listdir(temp_result_path)[0]) | |
# 读取结果图片 | |
result_image = Image.open(temp_result_path).copy() | |
# 删除临时文件夹 | |
temp_path.cleanup() | |
return result_image | |
# 候选图片 | |
example_image= [ | |
["./test_image/1.jpg", "红外图像"], | |
["./test_image/2.jpg", "红外图像"], | |
["./test_image/3.jpg", "红外图像"], | |
["./test_image/8.jpg", "红外图像"], | |
["./test_image/5.jpg", "红外图像"], | |
# ["./test_image/6.jpg]", "红外图像"], | |
["./test_image/4.jpg", "可见光图像"], | |
["./test_image/7.jpg", "可见光图像"] | |
] | |
# 目标追踪 | |
def Track(video, video_type, tracking_method): | |
# 存储临时视频的文件夹 | |
temp_dir = "./temp" | |
# 先清空temp文件夹 | |
shutil.rmtree("./temp") | |
os.mkdir("./temp") | |
# 获取视频的形式 | |
if video_type == "红外视频": | |
pt = "best2.pt" | |
else: | |
pt = "yolov5s.pt" | |
# 获取视频的名字 | |
video_name = os.path.basename(video) | |
# 对视频进行检测 | |
track.run(source=video, yolo_weights=Path(f"weights/{pt}"),reid_weights=Path("weights/osnet_x0_25_msmt17.pt") , project=Path(f'./{temp_dir}'), name = 'tempresult', tracking_method=tracking_method) | |
# 结果视频的路径 | |
temp_result_path = os.path.join(f'./{temp_dir}', "tempresult", video_name) | |
# 返回结果视频的路径 | |
return temp_result_path | |
# 候选视频 | |
example_video= [ | |
["./video/5.mp4", "红外视频", "bytetrack"], | |
["./video/bicyclecity.mp4","红外视频", "strongsort"], | |
["./video/9.mp4", "红外视频", "bytetrack"], | |
["./video/8.mp4", "红外视频", "strongsort"], | |
["./video/4.mp4", "红外视频", "bytetrack"], | |
["./video/car.mp4", "红外视频", "strongsort"], | |
["./video/caixukun.mp4", "可见光视频", "bytetrack"], | |
["./video/palace.mp4", "可见光视频", "bytetrack"], | |
] | |
iface_Image = gr.Interface(fn=Detect, | |
inputs=[gr.Image(label="上传一张图像(jpg格式)"), | |
gr.Radio(["红外图像", "可见光图像"], | |
label="image type", | |
info="选择图片的形式", | |
value="红外图像")], | |
outputs=gr.Image(label="检测结果"), | |
examples=example_image | |
) | |
iface_video = gr.Interface(fn=Track, | |
inputs=[gr.Video(label="上传一段视频(mp4格式)"), | |
gr.Radio(["红外视频", "可见光视频"], | |
label="video type", | |
info="选择视频的形式", | |
value="红外视频"), | |
gr.Radio(["bytetrack", "strongsort"], | |
label="track methond", | |
info="建议使用bytetrack, strongsort在cpu上运行很慢", | |
value="bytetrack")], | |
outputs=gr.Video(label="追踪结果"), | |
examples=example_video | |
) | |
demo = gr.TabbedInterface([iface_video, iface_Image], tab_names=["目标追踪", "目标检测"], title="红外目标检测追踪") | |
demo.launch() | |