File size: 15,477 Bytes
e324f43
 
 
 
cdd172b
e324f43
 
cdd172b
 
 
e324f43
1c6bb71
 
83c234f
1c6bb71
e324f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c095d8d
e324f43
 
 
c095d8d
 
cdd172b
c095d8d
cdd172b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c095d8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68bb4d
 
 
 
 
 
 
c095d8d
cdd172b
 
 
 
b68bb4d
 
 
 
 
cdd172b
c095d8d
 
 
 
 
 
fc7ea67
cdd172b
b68bb4d
 
 
add8b88
 
 
 
 
c095d8d
add8b88
1c6bb71
 
c095d8d
 
 
 
 
add8b88
c095d8d
 
 
 
 
 
 
 
fc7ea67
add8b88
c095d8d
 
 
add8b88
c095d8d
add8b88
cdd172b
add8b88
 
 
 
fc7ea67
c095d8d
 
 
add8b88
 
 
c095d8d
e324f43
c095d8d
 
 
 
add8b88
c095d8d
 
 
e324f43
c095d8d
 
add8b88
c095d8d
1c6bb71
c095d8d
 
 
 
 
 
e324f43
add8b88
 
 
cdd172b
add8b88
 
 
 
 
b68bb4d
 
 
 
1c6bb71
b68bb4d
 
 
 
add8b88
 
 
 
 
 
 
cdd172b
 
 
 
add8b88
cdd172b
 
add8b88
 
 
cdd172b
 
add8b88
cdd172b
add8b88
 
 
 
 
cdd172b
 
add8b88
cdd172b
add8b88
 
 
 
 
cdd172b
 
add8b88
 
 
 
 
 
cdd172b
add8b88
 
e324f43
add8b88
 
 
cdd172b
add8b88
 
1c6bb71
e324f43
 
 
 
 
 
 
 
add8b88
fc7ea67
cdd172b
 
 
add8b88
 
 
 
cdd172b
 
 
 
 
 
 
 
 
 
add8b88
 
fc7ea67
add8b88
 
 
 
 
cdd172b
add8b88
fc7ea67
add8b88
 
 
 
 
 
 
 
cdd172b
 
 
add8b88
 
cdd172b
 
add8b88
 
 
 
 
 
 
 
 
 
 
fc7ea67
add8b88
 
 
 
 
59c76fe
 
 
 
 
 
 
cdd172b
 
add8b88
 
 
 
 
 
 
 
 
cdd172b
 
 
 
 
add8b88
fc7ea67
cdd172b
 
 
add8b88
 
 
 
 
 
 
 
 
 
 
fc7ea67
cdd172b
 
add8b88
cdd172b
 
 
 
 
 
 
add8b88
 
 
 
 
 
 
 
 
e324f43
1c6bb71
e324f43
60ef30a
e324f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import streamlit as st
import pandas as pd
import joblib
from preprocessText import preprocess
from apiSearch import get_metadata,get_trending_videos
import base64
import requests
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# Load the model
def read_model(region):
    if(region == "United States"):
        model = joblib.load('85pct.pkl')
    return model

# Define the categories
categories = {
    'Film & Animation': 1,
    'Autos & Vehicles': 2,
    'Music': 10,
    'Pets & Animals': 15,
    'Sports' : 17,
    'Travel & Events' : 19,
    'Gaming' : 20,
    'People & Blogs' : 22,
    'Comedy' : 23,
    'Entertainment' : 24,
    'News & Politics' : 25,
    'Howto & Style' : 26,
    'Education' : 27,
    'Science & Technology' : 28,
    'Nonprofits & Activism' : 29
}


# Create the Streamlit web application
def main():
    st.set_page_config(layout="wide")
    st.markdown(
        f"""
      
        <style>
            @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
            @import url('https://fonts.googleapis.com/css2?family=YouTube+Sans&display=swap');
            html, body, [class*="css"]  {{
			    font-family: 'Roboto', sans-serif;
             
			}}
            [data-testid="stAppViewContainer"] > .main {{
                background-color : white;
            
            }}
            p{{
                font-family: 'Roboto', sans-serif;
                text-weight: bold;
                font-size: 25px;
            }}
            body{{
                display: flex;
                justify-content: center;
                align-items: center;
                text-align: center;
            }}
            h1{{
                text-align: center;
                color: #d72324;
            }}
            img{{
                max-width: 100%;
                max-height: 100%;
            }}
            .stButton > button {{
                background-color: #d72324;
                color:white;
                font-weight: bold; 
                width: 500px;
                height: 50px;
            }}
            .stDownloadButton > button{{
                background-color: #e7e7e7;
                color:black;
                font-weight: bold; 
                width: 150px;
                height: 35px;
                float: right;
            }}
            .stButton > button:hover {{
                background-color: white;
                color:#d72324;
            }}
            .my-container {{
                border: 2px solid #d72324;
                padding: 10px;
            }}
           
           
        </style>
        """,
        unsafe_allow_html=True
    )
    st.markdown("<body><img style = 'max-width: 20%;max-height: 20%;text-align: center;' src=\"https://media.tenor.com/U7OFq772kIEAAAAj/sweet-dreams.gif\"></body>",unsafe_allow_html=True)
    st.markdown("<h1>YouTube Trend Prediction</h1>", unsafe_allow_html=True)


    @st.cache_data 
    def convert_df(df):
        return df.to_csv(index=False).encode('utf-8')
  
    # Sidebar menu options
    menu_options = ["Predict", "Trending", "Visualize"]
    selected_option = st.sidebar.selectbox("Menu", menu_options)

    # Input fields
    if selected_option == "Predict":
        region = st.sidebar.selectbox("Select Region", ['United States'])
        model = read_model(region)
        with st.container():
            col1, col2, col3 = st.columns(3)
            getTitle, getDuration, getCategory = "", 0.00, 1
            getThumbnailUrl = ""
            with col1:
                url = st.text_input("URL", placeholder="Enter a video URL")
                if url:
                    metadata = get_metadata(url)
                    if not metadata.empty:
                        getTitle = metadata['title'].iloc[0]
                        getDuration = metadata['duration'].iloc[0]
                        category_id = metadata['category_id'].iloc[0]
                        getThumbnailUrl = metadata['thumbnail_link'].iloc[0]
                        getCategory = int(category_id)
                        getDescription = metadata['description'].iloc[0]

                        if getThumbnailUrl is not None:
                            picture = get_picture_from_url(getThumbnailUrl)
                            if picture:
                                st.image(picture, caption='Thumbnail captured', width=320, channels="BGR")
            with col2:
                title = st.text_input("Title", placeholder="Enter a video title", value=getTitle)
                duration = st.number_input("Duration (in seconds)", min_value=0.0, value=getDuration)
                category = st.selectbox(
                    "Category", list(categories.keys()), index=list(categories.values()).index(getCategory)
                )


            with col3:
                picture = st.file_uploader("Upload Picture", type=["jpg", "jpeg", "png"])
                if picture is not None:
                    st.picture(picture, caption='Thumbnail Uploaded', width=400, channels="BGR")

        # Convert category to category ID
        categoryId = categories[category]

        if st.button("Predict"):
            # Perform prediction
            if title is None or title.strip() == "" and duration == 0:
                st.warning("Please enter a title and duration.")

            else:
                if title is None or title.strip() == "":
                    st.warning("Please enter a title")

                if duration == 0:
                    st.warning("Please enter a duration.")

                else:
                    prediction = predict_trend(model,title, duration, categoryId)
                    if prediction[0] == 1:
                        st.success("This video is predicted to be a trend!")
                        st.markdown("![Alt Text](https://media.tenor.com/Cyi2zT7wcmcAAAAj/pentol-gif-eak.gif)")
                    else:
                        st.info("This video is predicted not to be a trend.")
                        st.markdown("![Alt Text](https://media.tenor.com/VYKtkKnHaUcAAAAj/quby-cute.gif)")

    elif selected_option == "Trending":
        tab1, tab2 = st.tabs(["Trending Board", "Video Info"])
        country_code = st.sidebar.selectbox("Select Country Code", ['US', 'CA', 'GB', 'DE', 'FR', 'RU', 'BR', 'IN', 'MY', 'SG', 'JP', 'KR'])
        with st.container():
            with tab1:
                st.write("Top 10 Trending Videos")
                df = get_trending_videos(country_code)
                st.dataframe(df)
                
                csv = convert_df(df)
                st.download_button(
                    "Download",
                    csv,
                    "top10Trending.csv",
                    "text/csv",
                    key='download-csv'
                )
                
            with tab2:
                if df is not None:
                    selected_video_title = st.selectbox("Select a Video", df['title'])
                    selected_video = df[df['title'] == selected_video_title].iloc[0]
                else:
                    st.error('Failed to retrieve trending videos.')
                col4, col5 = st.columns(2)
                with col4:
                    if selected_video is not None:
                        image = get_picture_from_url(selected_video['thumbnail_link'])
                        if image:
                            st.image(image, caption='Thumbnail captured', width=400, channels="BGR")
                with col5:
                    st.write("Title:", selected_video['title'])
                    category_name = next(
                        (key for key, value in categories.items() if value == selected_video['category_id']), 'Unknown Category'
                    )
                    st.write("Category:", category_name)
                    st.write("Duration:", selected_video['duration'])
           

    elif selected_option == "Visualize":
        with st.container():
            tab3, tab4, tab5, tab6 = st.tabs(["Best Category", "Best Duration","Best Title","Best Title Length"])
            with tab3:
                col6, col7 = st.columns(2)
                with col6:
                    show_top_category()

                with col7:
                    show_best_category()
            
            with tab4:
                col8, col9 = st.columns(2)
                with col8:
                    show_top_duration()

                with col9:
                    show_best_duration()
            
            with tab5:
                col10, col11 = st.columns(2)
                with col10:
                    show_top_title()
                with col11:
                    show_best_title()

            with tab6:
                col12, col13 = st.columns(2)
                with col12:
                    show_top_titleLength()
                with col13:
                    show_best_titleLength()
         
def get_picture_from_url(url):
    try:
        response = requests.get(url)
        image_data = response.content
        return image_data
    except:
        return None

def get_top_category():
    topCategory = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topCategory.csv')
    topCategory_sorted = topCategory.sort_values('predicted_prob')
    topCategory_sorted['rank'] = range(1, len(topCategory_sorted) + 1)
    topCategory_sorted['category_name'] = topCategory_sorted['category_id'].map(lambda x: next((key for key, value in categories.items() if value == x), 'Unknown Category'))
    return topCategory_sorted

def show_top_category():
    topCategory_sorted = get_top_category()

    color_palette = sns.color_palette('Set2', len(topCategory_sorted['category_id'].unique()))

    fig, ax = plt.subplots(figsize=(8, 5))
    sns.barplot(data=topCategory_sorted, x='rank', y='predicted_prob', hue='category_name', palette=color_palette)
    plt.xlabel('Rank')
    plt.ylabel('Predicted Probability')
    plt.title('Top Categories')
    st.pyplot(fig)

def show_best_category():
    topCategory_sorted = get_top_category()
    top_3_categories = topCategory_sorted.sort_values('predicted_prob', ascending=False).head(3)
    top_3_categories = top_3_categories['category_name'].head(3)
    st.header("Top 3 Categories")
    for category_id in top_3_categories:
        color = '#339933' if category_id == top_3_categories.iloc[0] else '#ffcc33' if category_id == top_3_categories.iloc[1] else '#ff9900'
        st.write(f"<span style='color:{color};font-weight:bold;'>{category_id}</span>", unsafe_allow_html=True)

def get_top_duration():
    topDurationsorted = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topDuration.csv')
    topDurationsorted = topDurationsorted.sort_values('predicted_prob', ascending=False)
    return topDurationsorted

def show_top_duration():
    topDuration_sorted = get_top_duration()
    sns.set(style='whitegrid')
    plt.figure(figsize=(10, 6))
    sns.barplot(x='duration_range', y='predicted_prob',data=topDuration_sorted)
    plt.xlabel('Duration')
    plt.ylabel('Predicted Probability')
    plt.title('Top Durations')
    plt.xticks(rotation=45)
    plt.show()
    st.pyplot(plt)


def show_best_duration():
    topDurationRange = get_top_duration()
    top_3_durationRange = topDurationRange.sort_values('predicted_prob', ascending=False).head(3)
    top_3_range = top_3_durationRange['duration_range'].head(3)
    st.header("Top 3 Duration Range")
    for range in top_3_range:
        color = '#339933' if range == top_3_range.iloc[0] else '#ffcc33' if range == top_3_range.iloc[1] else '#ff9900'
        st.write(f"<span style='color:{color};font-weight:bold;'>{range}</span>", unsafe_allow_html=True)

def get_top_title():
    topTitle = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topTitle.csv')
    topTitle_sorted = topTitle.sort_values('Importance Score', ascending=False)
    return topTitle_sorted

def show_top_title():
    topTitle_sorted = get_top_title()
    sns.set(style="whitegrid")
    plt.figure(figsize=(8, 6))
    sns.barplot(x='Importance Score', y='Feature', data=topTitle_sorted, palette="rocket")
    plt.xlabel('Importance Score', fontsize=12)
    plt.ylabel('Feature', fontsize=12)
    plt.title('Top Title Features', fontsize=14)
    plt.tight_layout()
    st.pyplot(plt)

def show_best_title():
    topTitle_sorted = get_top_title()
    top_3_keyword = topTitle_sorted.sort_values('Importance Score', ascending=False).head(3)
    top_3_keyword = topTitle_sorted['Feature'].head(3)
    st.header("Top 3 Keyword")
    for feature in top_3_keyword:
        color = '#339933' if feature == top_3_keyword.iloc[0] else '#ffcc33' if feature == top_3_keyword.iloc[1] else '#ff9900'
        st.write(f"<span style='color:{color};font-weight:bold;'>{feature}</span>", unsafe_allow_html=True)


def round_interval(interval_str):
    start, end = map(float, interval_str.strip('()[]').split(','))
    return f"({int(start)}, {int(end)})"

def get_top_titleLength():
    topTitleLength = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topTitleLength.csv')
    title_length_ranges = topTitleLength['titleLength']
    predicted_probs = topTitleLength['predicted_prob']
    rounded_ranges = [round_interval(range_val) for range_val in title_length_ranges]
    data = {
        'rounded_ranges': rounded_ranges,
        'predicted_probs': predicted_probs
    }

    topTitleLength = pd.DataFrame(data)
    sorted_titleLength = topTitleLength.sort_values(by='predicted_probs', ascending=False)
    return sorted_titleLength

def show_top_titleLength():
    topTitleLength = get_top_titleLength()

    sns.set(style='whitegrid')
    plt.figure(figsize=(10, 6))
    sns.barplot(x='rounded_ranges', y='predicted_probs',data=topTitleLength)
    plt.xlabel('Title Length Range')
    plt.ylabel('Predicted Probability')
    plt.title('Top 5 Ranges for Title Length vs. Predicted Probability')
    plt.xticks(rotation=45)
    plt.show()
    st.pyplot(plt)

def show_best_titleLength():
    topTitleLength = get_top_titleLength()
    top_3_titleLength = topTitleLength.sort_values('predicted_probs', ascending=False).head(3)
    top_3_range = top_3_titleLength['rounded_ranges'].head(3)
    st.header("Top 3 Title Length Range")
    for range in top_3_range:
        color = '#339933' if range == top_3_range.iloc[0] else '#ffcc33' if range == top_3_range.iloc[1] else '#ff9900'
        st.write(f"<span style='color:{color};font-weight:bold;'>{range}</span>", unsafe_allow_html=True)

# Function to make predictions
def predict_trend(model,title, duration, category_id):
    duration = str(duration)
    category_id = int(category_id)
    clean_new_title = preprocess(title)
    clean_new_title_str = ' '.join(clean_new_title)
    data = {
        'cleanTitle': [clean_new_title_str],
        'titleLength' : [len(title)],
        'categoryId': [category_id],
        'duration': [duration]
    }
    data = pd.DataFrame(data)
    data['categoryId'] = data['categoryId'].astype('category')
    data['duration'] = data['duration'].astype('float64')
    # Make the prediction
    print(model.predict_proba(data))
    prediction = model.predict(data)
    return prediction

if __name__ == "__main__":
    main()