Spaces:
Runtime error
Runtime error
File size: 20,998 Bytes
54199b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import hashlib
import itertools
import json
import logging
import math
import random
import os
import tempfile
import time
import einops
from torch.nn.utils.rnn import pad_sequence
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.parallel.distributed import DistributedDataParallel
from .data import ImageRewardDataset, RankingDataset
from open_clip import get_cast_dtype, CLIP, CustomTextCLIP
from .distributed import is_master, barrier
from .zero_shot import zero_shot_eval
from .precision import get_autocast
from ..open_clip.loss import PreferenceLoss, RankingLoss, HPSLoss
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def postprocess_clip_output(model_out):
return {
"image_features": model_out[0],
"text_features": model_out[1],
"logit_scale": model_out[2]
}
def unwrap_model(model):
if hasattr(model, 'module'):
return model.module
else:
return model
def backward(total_loss, scaler):
if scaler is not None:
scaler.scale(total_loss).backward()
else:
total_loss.backward()
def random_sampling_iterator(iterators, sampling_ratios, data_types, num_iters):
iterators = [iter(iterator) for iterator in iterators]
num_iterators = len(iterators)
loop_counter = 0
while loop_counter < num_iters:
current_state = random.getstate()
random.seed(loop_counter)
iterator_idx = random.choices(range(num_iterators), sampling_ratios)[0]
random.setstate(current_state)
yield next(iterators[iterator_idx]), data_types[iterator_idx]
loop_counter += 1
def train_iters(model, data, iterations, optimizer, scaler, scheduler, dist_model, args, tb_writer=None):
device = torch.device(args.device)
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
model.train()
ce_loss = PreferenceLoss()
mse_loss = torch.nn.MSELoss()
rk_loss = RankingLoss()
hps_loss = HPSLoss()
if args.distill:
dist_model.eval()
for train_set in data['train']:
train_set.set_epoch(0) # set epoch in process safe manner via sampler or shared_epoch
data_types = [d.data_type for d in data['train']]
train_data_sample_ratios = [sample_ratio for sample_ratio, ignore in zip(args.train_data_sample_ratio, args.ignore_in_train) if not ignore]
dataloader = random_sampling_iterator([dataset.dataloader for dataset in data['train']], train_data_sample_ratios, data_types, iterations)
sample_digits = math.ceil(math.log(sum([dataset.dataloader.num_samples for dataset in data['train']]) + 1, 10))
losses_m = {}
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
for step, (batch, data_type) in enumerate(dataloader):
# TODO: currently only test on accum_freq==1
if not args.skip_scheduler:
scheduler(step)
if data_type == 'preference':
images, num_images, labels, texts = batch
texts = texts.to(device=device, non_blocking=True)
elif data_type == 'rating':
images, labels = batch
elif data_type == 'regional':
images, labels = batch
elif data_type == 'ranking':
images, num_images, labels, texts = batch
texts = texts.to(device=device, non_blocking=True)
elif data_type == 'HPD':
images, labels, texts = batch
# num_per_prompts = num_per_prompts.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
data_time_m.update(time.time() - end)
optimizer.zero_grad()
if args.accum_freq == 1:
with autocast():
if data_type == 'rating' or args.no_text_condition:
image_features = unwrap_model(model).visual(images)
scores = unwrap_model(model).score_predictor(image_features)
if args.no_text_condition:
paired_logits_list = [logit[:,0] for i, logit in enumerate(scores.split(num_images.tolist()))]
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999)
total_loss = F.cross_entropy(paired_logits, labels)
else:
total_loss = mse_loss(scores.squeeze(), labels.to(scores.dtype))
elif data_type == 'preference' :
output = model(images, texts)
image_features, text_features, logit_scale = output["image_features"], output["text_features"], output["logit_scale"]
# total_loss = loss(image_features, text_features, logit_scale)
logits_per_image = logit_scale * image_features @ text_features.T
total_loss = ce_loss(logits_per_image, num_images, labels)
elif data_type == 'HPD':
output = model(images, texts)
image_features, text_features, logit_scale = output["image_features"], output["text_features"], output["logit_scale"]
logits_per_text = logit_scale * text_features @ image_features.T
total_loss = hps_loss(logits_per_text, labels)
elif data_type == 'ranking':
output = model(images, texts)
image_features, text_features, logit_scale = output["image_features"], output["text_features"], output["logit_scale"]
# logits_per_image = logit_scale * image_features @ text_features.T
score = logit_scale * image_features @ text_features.T
total_loss = rk_loss(score, num_images, labels, args.margin)
elif data_type == 'regional':
# logit_scale = model.logit_scale
feature_map = unwrap_model(model).visual(images, skip_pool=True)[:, 1:]
logits = unwrap_model(model).region_predictor(feature_map)
wh = int(math.sqrt(feature_map.size(1)))
ps = images.size(2) // wh
logits = logits.unflatten(1, (wh, wh))[:,:,:,0]
# downsample the labels to match the feature map size
patches = einops.reduce(labels, 'b (h s1) (w s2) -> b h w', 'mean', s1=ps, s2=ps)
patches = (patches > 0).float()
total_loss = mse_loss(logits.sigmoid(), patches.to(patches.dtype))
backward(total_loss, scaler)
losses = dict(total_loss=total_loss)
if scaler is not None:
if args.horovod:
optimizer.synchronize()
scaler.unscale_(optimizer)
if args.grad_clip_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
with optimizer.skip_synchronize():
scaler.step(optimizer)
else:
if args.grad_clip_norm is not None:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
scaler.step(optimizer)
scaler.update()
else:
if args.grad_clip_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
optimizer.step()
# Note: we clamp to 4.6052 = ln(100), as in the original paper.
with torch.no_grad():
unwrap_model(model).logit_scale.clamp_(0, math.log(100))
batch_time_m.update(time.time() - end)
end = time.time()
batch_count = step + 1
if is_master(args) and (step % args.log_every_n_steps == 0 or batch_count == iterations):
batch_size = len(images)
num_samples = batch_count * args.accum_freq
percent_complete = 100.0 * batch_count / iterations
# NOTE loss is coarsely sampled, just master node and per log update
for key, val in losses.items():
if key not in losses_m:
losses_m[key] = AverageMeter()
losses_m[key].update(val.item(), batch_size)
logit_scale_scalar = unwrap_model(model).logit_scale.item()
loss_log = " ".join(
[
f"{loss_name.capitalize()}: {loss_m.val:#.5g} ({loss_m.avg:#.5g})"
for loss_name, loss_m in losses_m.items()
]
)
samples_per_second = args.accum_freq * args.world_size / batch_time_m.val
samples_per_second_per_gpu = args.accum_freq / batch_time_m.val
logging.info(
f"Train iterations: [{num_samples:>{sample_digits}}/{iterations} ({percent_complete:.0f}%)] "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f}, {samples_per_second:#g}/s, {samples_per_second_per_gpu:#g}/s/gpu "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
f"Logit Scale: {logit_scale_scalar:.3f} " + loss_log
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"samples_per_second": samples_per_second,
"samples_per_second_per_gpu": samples_per_second_per_gpu,
"scale": logit_scale_scalar,
"lr": optimizer.param_groups[0]["lr"]
}
log_data.update({name:val.val for name,val in losses_m.items()})
for name, val in log_data.items():
name = "train/" + name
if tb_writer is not None:
tb_writer.add_scalar(name, val, step)
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
def evaluate_preference(model, data, args):
model = unwrap_model(model)
model.eval()
dataloader = data.dataloader
samples_per_val = dataloader.num_samples
device = torch.device(args.device)
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
total = 0
correct = 0
with torch.no_grad():
for i, batch in enumerate(dataloader):
if i % args.world_size != args.rank:
continue
images, num_images, labels, texts = batch
images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
with autocast():
if args.no_text_condition:
image_features = model.visual(images)
logit_scale = model.logit_scale
scores = model.score_predictor(image_features)
paired_logits_list = [logit[:,0] for i, logit in enumerate(scores.split(num_images.tolist()))]
else:
outputs = model(images, texts)
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
logits_per_image = logit_scale * image_features @ text_features.T
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
predicted = torch.tensor([k.argmax().item() for k in paired_logits_list])
correct += (predicted == labels).int().sum().item()
total += predicted.numel()
# write to a temp file
file_name = hashlib.md5(str(args.name).encode()).hexdigest()
with open(f"{file_name}_{args.rank}.json", "w") as f:
json.dump(dict(
correct=correct,
total=total,
), f)
time.sleep(0.1)
barrier(args)
correct = 0
total = 0
if is_master(args):
for i in range(args.world_size):
with open(f"{file_name}_{i}.json", "r") as f:
data = json.load(f)
correct += data["correct"]
total += data["total"]
os.remove(f"{file_name}_{i}.json")
logging.info(
f"Final Acc: {correct / total:.4f}\t")
return correct / (total + 1e-6)
def evaluate_regional(model, data, args):
dataloader = data.dataloader
samples_per_val = dataloader.num_samples
device = torch.device(args.device)
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
num_samples = len(dataloader)
threshold = 0.5
with torch.no_grad():
score = 0
total = 0
for i, batch in enumerate(dataloader):
images, labels = batch
images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
with autocast():
feature_map = model.visual(images, skip_pool=True)[:, 1:]
logits = model.region_predictor(feature_map)
wh = int(math.sqrt(feature_map.size(1)))
ps = images.size(2) // wh
logits = logits.unflatten(1, (wh, wh))[:,:,:,0]
# downsample the labels to match the feature map size
patches = einops.reduce(labels, 'b (h s1) (w s2) -> b h w', 'mean', s1=ps, s2=ps)
patches = (patches > 0).float()
pred_mask = (logits.sigmoid() > threshold).float()
#calc IOU
intersection = (pred_mask * patches).sum()
union = pred_mask.sum() + patches.sum() - intersection
iou_score = intersection / union
score += iou_score
total += 1
if is_master(args) and (i % 100) == 0:
logging.info(
# f"[{i} / {samples_per_val}]\t"
f"[{i} / {len(dataloader)}]\t"
f"Current IoU: {score / (total + 0.001):.4f}\t")
if is_master(args):
logging.info(
f"Final IoU: {score / (total + 0.001):.4f}\t")
return score / (total + 0.001)
def inversion_score(p1, p2):
assert len(p1) == len(p2), f'{len(p1)}, {len(p2)}'
n = len(p1)
cnt = 0
for i in range(n-1):
for j in range(i+1, n):
if p1[i] > p1[j] and p2[i] < p2[j]:
cnt += 1
elif p1[i] < p1[j] and p2[i] > p2[j]:
cnt += 1
return 1 - cnt / (n * (n - 1) / 2)
def model_pair_score(score:dict, p1, p2, num_image):
model_pairs = set()
for i in range(num_image):
if i not in score.keys():
score[i] = {}
for j in range(num_image):
if j not in score[i].keys():
score[i][j] = 0
if j == i or (i, j) in model_pairs or (j, i) in model_pairs:
continue
model_pairs.add((i,j))
if (p1[i] - p1[j]) * (p2[i] - p2[j]) > 0:
score[i][j] += 1
return score
def all_gather(tensor):
world_size = torch.distributed.get_world_size()
tensor_list = [torch.ones_like(tensor) for _ in range(world_size)]
torch.distributed.all_gather(tensor_list, tensor, async_op=False)
return torch.cat(tensor_list, dim=0)
def evaluate_ranking(model, data, args):
model = unwrap_model(model)
model.eval()
dataloader = data.dataloader
samples_per_val = dataloader.num_samples
device = torch.device(args.device)
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
score = 0
# pair_score = {}
with torch.no_grad():
for i, batch in enumerate(dataloader):
if i % args.world_size != args.local_rank:
continue
images, num_images, labels, texts = batch
images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
num_images = num_images.to(device=device, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
with autocast():
if args.no_text_condition:
image_features = model.visual(images)
logit_scale = model.logit_scale
scores = model.score_predictor(image_features)
paired_logits_list = [logit[:,0] for i, logit in enumerate(scores.split(num_images.tolist()))]
else:
outputs = model(images, texts)
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
logits_per_image = logit_scale * image_features @ text_features.T
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
predicted = [torch.argsort(-k) for k in paired_logits_list]
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
labels = [label for label in labels.split(num_images.tolist())]
if isinstance(dataloader.dataset, RankingDataset):
score += sum([inversion_score(hps_ranking[i], labels[i]) for i in range(len(hps_ranking))])
elif isinstance(dataloader.dataset, ImageRewardDataset):
score +=sum([calc_ImageReward(paired_logits_list[i].tolist(), labels[i]) for i in range(len(hps_ranking))])
# write score to a tempfile, file name is a hash string
file_name = hashlib.md5(str(args.name).encode()).hexdigest()
with open(f"{file_name}_{args.rank}.tmp", "w") as f:
f.write(str(score))
time.sleep(0.1)
barrier(args)
score = 0
if is_master(args):
for i in range(args.world_size):
with open(f"{file_name}_{i}.tmp", "r") as f:
score += float(f.read())
os.remove(f"{file_name}_{i}.tmp")
score = score / samples_per_val
logging.info(
f"Final Acc: {score:.4f}\t")
# return score, pair_score
return score
def calc_ImageReward( pred, gt):
# using inversion score calculate method in ImageReward
# There's some little difference because ImageReward benchmark has tie rankings
tol_cnt = 0.
true_cnt = 0.
for idx in range(len(gt)):
item_base = gt
item = pred
for i in range(len(item_base)):
for j in range(i+1, len(item_base)):
if item_base[i] > item_base[j]:
if item[i] >= item[j]:
tol_cnt += 1
elif item[i] < item[j]:
tol_cnt += 1
true_cnt += 1
elif item_base[i] < item_base[j]:
if item[i] > item[j]:
tol_cnt += 1
true_cnt += 1
elif item[i] <= item[j]:
tol_cnt += 1
return true_cnt / tol_cnt
def get_clip_metrics(image_features, text_features, logit_scale):
metrics = {}
logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu()
logits_per_text = logits_per_image.t().detach().cpu()
logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text}
ground_truth = torch.arange(len(text_features)).view(-1, 1)
for name, logit in logits.items():
ranking = torch.argsort(logit, descending=True)
preds = torch.where(ranking == ground_truth)[1]
preds = preds.detach().cpu().numpy()
metrics[f"{name}_mean_rank"] = preds.mean() + 1
metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"{name}_R@{k}"] = np.mean(preds < k)
return metrics
def maybe_compute_generative_loss(model_out):
if "logits" in model_out and "labels" in model_out:
token_logits = model_out["logits"]
token_labels = model_out["labels"]
return F.cross_entropy(token_logits.permute(0, 2, 1), token_labels)
|