File size: 40,246 Bytes
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7818025
 
 
 
 
 
ed581c9
 
 
 
 
 
 
 
 
7818025
 
 
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7818025
 
 
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7818025
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
7818025
 
 
 
 
 
 
 
 
 
e863dee
7818025
 
 
 
 
 
 
 
ed581c9
 
 
 
 
 
 
 
 
e863dee
ed581c9
e863dee
 
 
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
ed581c9
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
ed581c9
e863dee
 
ed581c9
 
e863dee
 
ed581c9
 
 
 
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
ed581c9
 
 
 
 
 
 
7818025
e863dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed581c9
 
 
 
e863dee
ed581c9
 
7818025
 
 
 
 
e863dee
7818025
e863dee
ed581c9
 
 
7818025
ed581c9
 
7818025
 
 
ed581c9
7818025
 
 
 
 
 
ed581c9
 
 
 
 
e863dee
ed581c9
 
e863dee
 
 
 
 
 
 
ed581c9
7818025
8caa70f
 
 
 
7818025
 
ed581c9
 
 
 
e863dee
 
 
ed581c9
 
7818025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed581c9
 
 
7818025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
 
7818025
 
 
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
ed581c9
 
 
e863dee
ed581c9
 
 
 
 
 
 
e863dee
 
ed581c9
 
 
 
 
 
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
 
ed581c9
e863dee
ed581c9
 
e863dee
ed581c9
 
 
 
 
e863dee
ed581c9
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
e863dee
 
 
ed581c9
 
 
 
 
 
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7818025
ed581c9
7818025
ed581c9
 
 
 
 
 
e863dee
 
ed581c9
e863dee
 
ed581c9
e863dee
ed581c9
 
e863dee
ed581c9
e863dee
 
ed581c9
e863dee
ed581c9
e863dee
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
 
 
ed581c9
 
 
 
 
e863dee
ed581c9
e863dee
ed581c9
 
 
 
 
e863dee
 
ed581c9
 
 
e863dee
ed581c9
 
 
 
 
 
 
 
 
e863dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed581c9
 
 
 
7818025
 
 
 
ed581c9
7818025
 
 
ed581c9
 
 
7818025
e863dee
7818025
 
 
e863dee
 
 
 
7818025
 
 
 
ed581c9
 
 
 
 
376378a
ed581c9
 
 
 
7818025
 
ed581c9
 
 
 
 
 
 
e863dee
ed581c9
 
7818025
 
 
e863dee
 
7818025
 
 
 
 
 
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e863dee
 
 
 
ed581c9
e863dee
ed581c9
 
 
 
 
 
e863dee
ed581c9
e863dee
ed581c9
e863dee
 
 
 
ed581c9
 
 
 
 
 
 
e863dee
 
ed581c9
 
e863dee
ed581c9
e863dee
 
ed581c9
 
 
e863dee
 
ed581c9
 
 
 
 
 
 
 
 
7818025
 
 
e863dee
7818025
 
 
 
e863dee
 
 
 
 
7818025
ed581c9
 
 
 
 
 
 
 
 
 
 
e863dee
7818025
 
 
 
 
 
 
 
 
 
e863dee
 
 
 
 
376378a
 
ed581c9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
import streamlit as st
import pandas as pd
import numpy as np
import os
import sys
sys.path.append(os.path.dirname(os.getcwd()))
from project_tools import project_utils, project_config, numerapi_utils
import warnings
import plotly.express as px
import json
warnings.filterwarnings("ignore")
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit import caching
import time
import traceback
import datetime

st.set_page_config(layout='wide')
get_benchmark_data = True

# get_dailyscore = True




def sidebar_data_picker():
    st.sidebar.subheader('Model Data Picker')
    top_lb = st.sidebar.checkbox('top LB by corr', value=True)
    top_tp3m = st.sidebar.checkbox('most profitable 3 month', value=True)
    top_tp1y = st.sidebar.checkbox('most profitable 1 year', value=True)
    special_list = st.sidebar.checkbox('model from specific users', value=True)
    return top_lb, top_tp3m, top_tp1y, special_list


# to be removed
def model_data_picker_bak(values = None):
    if values is None:
        values = [True, True, True, True, True, True]
    model_dict = {}
    st.sidebar.subheader('Model Data Picker')
    # top_lb = st.sidebar.checkbox('top LB by corr', value=values[0])
    # top_tp3m = st.sidebar.checkbox('most profitable 3 month', value=values[1])
    top_tp1y = st.sidebar.checkbox('most profitable 1 year', value=values[2])
    special_list = st.sidebar.checkbox('model from specific users', value=values[3])
    benchmark_list = st.sidebar.checkbox('benchmark models', value=values[4])
    default_list = st.sidebar.checkbox('default models', value=values[5])
    # if top_lb:
    #     model_dict['top_corr'] = project_config.TOP_LB
    # if top_tp3m:
        # model_dict['top_3m'] = project_config.TP3M
    if top_tp1y:
        model_dict['top_1y'] = project_config.TP1Y
    if benchmark_list:
        model_dict['benchmark'] = project_config.BENCHMARK_MODELS
    if special_list:
        model_dict['iaai'] = project_config.IAAI_MODELS
        # model_dict['arbitrage'] = project_config.ARBITRAGE_MODELS
        # model_dict['mm'] = project_config.MM_MODELS
        # model_dict['restrade'] = project_config.RESTRADE_MODELS

    if default_list:
        model_dict['yx'] = project_config.MODEL_NAMES + project_config.NEW_MODEL_NAMES
        model_dict['mcv'] = project_config.MCV_MODELS + project_config.MCV_NEW_MODELS
    return model_dict


# to be removed
def model_fast_picker_bak(models):
    text_content = '''
                    fast model picker by CSV string.
                    example: "model1, model2, model3" 
                   '''
    text = st.sidebar.text_area(text_content)
    result_models = []
    if len(text)>0:
        csv_parts = text.split(',')
        for s in csv_parts:
            m = s.strip()
            if m in models:
                result_models.append(m)
    return list(dict.fromkeys(result_models))



def default_model_picker():
    picked_models = {}
    if os.path.isfile('default_models.json'):
        default_models_dict = project_utils.load_json('default_models.json')
        for key in default_models_dict.keys():
            picked_models[key] = default_models_dict[key]
    if os.path.isfile('user_models.json'):
        user_models_dict = project_utils.load_json('user_models.json')
        for key in user_models_dict.keys():
            picked_models[key] = user_models_dict[key]
    return picked_models


def model_fast_picker(model_list):
    text_content = '''
                    fast model picker by CSV string.
                    example: "model1, model2, model3" 
                   '''
    text = st.sidebar.text_area(text_content)
    result_models = []
    if len(text)>0:
        csv_parts = text.split(',')
        for s in csv_parts:
            m = s.strip()
            if (m  in model_list): #and (m not in preselected_models):
                result_models.append(m)
    return list(dict.fromkeys(result_models))






def generate_round_table(data, row_cts, c, r, sortcol='corrmmc'):
    # rounds = data
    # row_cts[c].write(2*r+c)
    latest_round = int(data['roundNumber'].max())
    earliest_round =  int(data['roundNumber'].min())
    suggest_round = int(latest_round - (2*r+c))
    select_round = row_cts[c].slider('select a round', earliest_round, latest_round, suggest_round, 1)
    # row_cts[c].write(select_round)
    round_data = data[data['roundNumber']==select_round].sort_values(by=sortcol, ascending=False).reset_index(drop=True)
    round_resolved_time = round_data['roundResolveTime'][0]
    # round_data = round_data[round_data['model'].isin(models)].reset_index(drop=True)
    # latest_date = round_data['date'].values[0]
    row_cts[c].write(f'round: {select_round}  resolved time: {round_resolved_time}')
    row_cts[c].dataframe(round_data.drop(['roundNumber', 'roundResolveTime'], axis=1), height=max_table_height-100)






def generate_dailyscore_metrics(data, row_cts, c, r):
    # row_cts[c].write([r, c, 2*r+c])
    select_metric = row_cts[c].selectbox("", list(id_metric_opt.keys()), index=2*r+c, format_func=lambda x: id_metric_opt[x])
    latest_round = int(data['roundNumber'].max())
    earliest_round = int(data['roundNumber'].min())
    score = id_metric_score_dic[select_metric]
    df = project_utils.calculate_rounddailysharpe_dashboard(data, latest_round, earliest_round, score).sort_values(by='sos', ascending=False)
    row_cts[c].dataframe(df, height=max_table_height-100)
    pass

def get_roundmetric_data(data):
    numfeats1 = ['corr', 'mmc', 'tc', 'corrmmc', 'corrtc', 'fncV3', 'fncV3_pct']
    stat1 = ['sum', 'mean', 'count',
             {'sharpe': project_utils.get_array_sharpe}]  # {'ptp':np.ptp}]#{'sharp':project_utils.get_array_sharpe}]
    numfeats2 = ['corr_pct', 'mmc_pct', 'tc_pct','corrtc_avg_pct', 'corrmmc_avg_pct']
    stat2 = ['mean']#, {'sharp': project_utils.get_array_sharpe}]

    roundmetric_agg_rcp = [
        [['model'], numfeats1, stat1],
        [['model'], numfeats2, stat2]
    ]

    res = project_utils.groupby_agg_execution(roundmetric_agg_rcp, data)['model']
    rename_dict = {}
    for c in res.columns.tolist():
        if c != 'model':
            rename_dict[c] = c[6:] # remove 'model_' in column name
    res.rename(columns = rename_dict, inplace=True)
    return res


def generate_round_metrics(data, row_cts, c, r):
    select_metric = row_cts[c].selectbox("", list(roundmetric_opt.keys()), index=2*r+c, format_func=lambda x: roundmetric_opt[x])
    cols = ['model']
    # st.write(select_metric)
    # st.write(data.columns.tolist())
    for col in data.columns.tolist():
        if select_metric =='corrmmc':
            if (f'{select_metric}_' in col) or ('corrmmc_avg_' in col):
                cols += [col]
        elif select_metric =='corrtc':
            if (f'{select_metric}_' in col) or ('corrtc_avg_' in col):
                cols += [col]
        else:
            # if (f'{select_metric}_' in col) and (not('corrmmc' in col)) and (not('corrtc' in col)):
            if (f'{select_metric}_' in col):
                cols+= [col]

    if select_metric != 'pct':
        sort_col = select_metric+'_sharpe'
    else:
        sort_col = 'corr_pct_mean'
    view_data = data[cols].sort_values(by=sort_col, ascending=False)
    row_cts[c].dataframe(view_data)
    pass


def dailyscore_chart(data, row_cts, c, r, select_metric):
    latest_round = int(data['roundNumber'].max())
    earliest_round =  int(data['roundNumber'].min())
    suggest_round = int(latest_round - (2*r+c))
    select_round = row_cts[c].slider('select a round', earliest_round, latest_round, suggest_round, 1)
    data = data[data['roundNumber']==select_round]
    if len(data)>0:
        fig = chart_pxline(data, 'date', y=select_metric, color='model', hover_data=list(histtrend_opt.keys()))
        row_cts[c].plotly_chart(fig, use_container_width=True)
    else:
        row_cts[c].info('no data was found for the selected round')
    pass


def generate_live_round_stake(data, row_cts, c, r):
    latest_round = int(data['roundNumber'].max())
    select_round = int(latest_round - (2*r+c))
    select_data = data[data['roundNumber']==select_round].reset_index(drop=True)
    if len(select_data)>0:
        payout_sum = select_data['payout'].sum().round(3)
        stake_sum = select_data['stake'].sum().round(3)
        if payout_sum >= 0:
            payout_color = 'green'
        else:
            payout_color = 'red'

        space = ' '*5
        content_str = f'#### Round: {select_round}{space}Stake: {stake_sum}{space}Payout: <span style="color:{payout_color}">{payout_sum}</span> NMR'
        row_cts[c].markdown(content_str, unsafe_allow_html=True)
        select_data = select_data.drop(['roundNumber'], axis=1).sort_values(by='payout', ascending=False)
        row_cts[c].dataframe(select_data, height=max_table_height-100)



def round_view(data, select_perview, select_metric=None):
    num_cols = 2
    num_rows = 2
    for r in range(num_rows):
        row_cts = st.columns(num_cols)
        for c in range(num_cols):
            if select_perview=='round_result':
                generate_round_table(data, row_cts, c, r)
            if select_perview=='dailyscore_metric':
                generate_dailyscore_metrics(data, row_cts, c, r)
            if select_perview=='metric_view':
                generate_round_metrics(data, row_cts, c, r)
            if select_perview=='dailyscore_chart':
                dailyscore_chart(data, row_cts, c, r, select_metric)
            if select_perview=='live_round_stake':
                 generate_live_round_stake(data, row_cts, c, r)


def score_overview():
    if 'model_data' in st.session_state:
        data = st.session_state['model_data'].copy()
        data = data.drop_duplicates(['model', 'roundNumber'], keep='first')
        roundview =  st.expander('round performance overview', expanded=True)
        with roundview:
            round_view(data, 'round_result')
    else:
        st.write('model data missing, please go to the Dowanload Score Data section to download model data first')

def metric_overview():
    if 'model_data' in st.session_state:
        data = st.session_state['model_data'].copy()
        st.subheader('Select Round Data')
        latest_round = int(data['roundNumber'].max())
        earliest_round = int(data['roundNumber'].min())
        if (latest_round - earliest_round) > 10:
            # suggest_round = int(latest_round - (latest_round - earliest_round) / 2)
            suggest_round = 280
        else:
            suggest_round = earliest_round
        select_rounds = st.slider('select a round', earliest_round, latest_round, (suggest_round, latest_round - 1), 1)
        data=data.drop_duplicates(['model', 'roundNumber'], keep='first')
        data = data[(data['roundNumber'] >= select_rounds[0]) & (data['roundNumber'] <= select_rounds[1])].reset_index(drop=True)
        roundmetrics_data = get_roundmetric_data(data)
        min_count = int(roundmetrics_data['count'].min())
        max_count = int(roundmetrics_data['count'].max())
        if min_count < max_count:
            select_minround = st.sidebar.slider('miminum number of rounds', min_count, max_count, min_count, 1)
        else:
            select_minround = min_count
        roundmetrics_data = roundmetrics_data[roundmetrics_data['count'] >= select_minround].reset_index(drop=True)
        metricview_exp = st.expander('metric overview', expanded=True)
        dataview_exp = st.expander('full data view', expanded=False)
        with metricview_exp:
            round_view(roundmetrics_data, 'metric_view')
        with dataview_exp:
            st.write(roundmetrics_data)
    else:
        st.write('model data missing, please go to the Dowanload Score Data section to download model data first')


def data_operation():
    # top_lb, top_tp3m, top_tp1y, special_list = sidebar_data_picker()
    full_model_list = st.session_state['models']
    latest_round = project_utils.latest_round
    models = []
    benchmark_opt = st.sidebar.checkbox('download default models', value=True)
    if benchmark_opt:
        model_dict = default_model_picker()
        for k in model_dict.keys():
            models += model_dict[k]
    models = models + model_fast_picker(full_model_list)
    if len(models)>0:
        model_selection = st.multiselect('select models', st.session_state['models'], default=models)
    suggest_min_round = 182 #latest_round-50
    min_round, max_round = st.slider('select tournament rounds', 200, latest_round, (suggest_min_round, latest_round), 1)
    roundlist = [i for i in range(max_round, min_round-1, -1)]
    download = st.button('download data of selected models')
    st.sidebar.subheader('configuration')
    show_info=st.sidebar.checkbox('show background data', value=False)
    # update_numeraiti_data = st.sidebar.checkbox('update numerati data', value=True)
    # update_model_data = st.sidebar.checkbox('update model data', value=True)
    # update_model_data =

    model_df = get_saved_data()
    if download and len(model_selection)>0:
        # if update_model_data:
        with st.spinner('downloading model round results'):
            model_df = []
            model_df = download_model_round_result(model_selection, roundlist, show_info)

    prjreload = st.sidebar.button('reload config')
    if prjreload:
        project_utils.reload_project()
    if len(model_df)>0:
        rename_dict = {'corrPercentile': 'corr_pct', 'correlation':'corr', 'corrWMetamodel':'corr_meta', 'mmcPercentile':'mmc_pct', 'tcPercentile':'tc_pct', 'fncV3Percentile':'fncV3_pct'}
        model_df.rename(columns=rename_dict, inplace=True)
        model_df['corrmmc'] = model_df['corr'] + model_df['mmc']
        model_df['corrmmc_avg_pct'] = (model_df['corr_pct'] + model_df['mmc_pct'])/2
        model_df['corrtc'] = model_df['corr'] + model_df['tc']
        model_df['corrtc_avg_pct'] = (model_df['corr_pct'] + model_df['tc_pct'])/2
        # st.write(model_df.head(5))
        # ord_cols = ['model','corr', 'mmc', 'tc', 'corrmmc', 'corrtc', 'corr_pct', 'tc_pct',  'corrtc_avg_pct','corr_meta', 'mmc_pct', 'corrmmc_avg_pct', 'roundNumber', 'roundResolveTime']
        ord_cols = ['model','corr', 'tc',  'corrtc', 'corr_pct', 'tc_pct',  'corrtc_avg_pct','corr_meta',  'fncV3', 'fncV3_pct','corrmmc_avg_pct', 'roundNumber', 'roundResolveTime', 'mmc', 'corrmmc','mmc_pct']

        model_df = model_df[ord_cols]
        if project_config.SAVE_LOCAL_COPY:
            try:
                project_utils.pickle_data(project_config.MODEL_ROUND_RESULT_FILE, model_df)
            except:
                pass
        st.session_state['model_data'] = model_df

    if show_info:
        st.text('list of models being tracked')
        st.write(model_dict)
        try:
            dshape = st.session_state['model_data'].shape
            st.write(f'downloaded model result data shape is {dshape}')
            st.write(model_df)
        except:
            st.write('model data was not retrieved')

    if len(model_df)>0:
        get_performance_data_status(model_df)
    return None

def get_saved_data():
    res = []
    if os.path.isfile(project_config.MODEL_ROUND_RESULT_FILE):
        res = project_utils.load_data(project_config.MODEL_ROUND_RESULT_FILE)
        st.session_state['model_data'] = res
    return res

def get_performance_data_status(df):
    st.sidebar.subheader('model data summary')
    # latest_date = df['date'][0].strftime(project_config.DATETIME_FORMAT3)
    model_num = df['model'].nunique()
    round_num = df['roundNumber'].nunique()
    latest_round = df['roundNumber'].max()
    # st.sidebar.text(f'latest date: {latest_date}')
    st.sidebar.text(f'number of models: {model_num}')
    st.sidebar.text(f'number of rounds: {round_num}')
    st.sidebar.text(f'latest round: {latest_round}')
    return None


def download_model_round_result(models, roundlist, show_info):
    model_df = []
    model_dfs = []
    my_bar = st.progress(0.0)
    my_bar.progress(0.0)
    percent_complete = 0.0
    for i in range(len(models)):
        message = ''
        try:
            model_res = numerapi_utils.daily_submissions_performances_V3(models[i])
            if len(model_res) > 0:
                cols = ['model'] + list(model_res[0].keys())
                model_df = pd.DataFrame(model_res)
                model_df['model'] = models[i]
                model_df = model_df[cols]
                model_dfs.append(model_df)
            else:
                message = f'no result found for model {models[i]}'
        except Exception:
            # if show_info:
            #     st.write(f'error while getting result for {models[i]}')
            except_msg = traceback.format_exc()
            message = f'error while getting result for {models[i]}: {except_msg}'
        if show_info and len(message) > 0:
            st.info(message)
        percent_complete += 1 / len(models)
        if i == len(models) - 1:
            percent_complete = 1.0
        time.sleep(0.1)
        my_bar.progress(percent_complete)
        model_df = pd.concat(model_dfs, axis=0).sort_values(by=['roundNumber'], ascending=False).reset_index(drop=True)
        model_df['roundResolveTime'] = pd.to_datetime(model_df['roundResolveTime'])
        model_df['roundResolveTime'] = model_df['roundResolveTime'].dt.strftime(project_config.DATETIME_FORMAT3)
        model_df = model_df[model_df['roundNumber'].isin(roundlist)].reset_index(drop=True)
    return model_df

def chart_pxline(data, x, y, color, hover_data=None, x_range=None):
    fig = px.line(data, x=x, y=y, color=color, hover_data=hover_data)
    fig.update_layout(plot_bgcolor='black', paper_bgcolor='black', font_color='white', height = max_height, margin=dict(l=0, r=10, t=20, b=20))
    fig.update_xaxes(showgrid=False, range=x_range)
    fig.update_yaxes(gridcolor='grey')
    return fig


def roundresult_chart(data, model_selection):

    round_data = data[data['model'].isin(model_selection)].drop_duplicates(['model', 'roundNumber'],                                                                           keep='first').reset_index(drop=True)
    min_round = int(round_data['roundNumber'].min())
    max_round = int(round_data['roundNumber'].max())
    suggest_min_round = max_round - 20
    if min_round == max_round:
        min_round = max_round - 20

    min_selectround, max_selectround = st.slider('select plotting round range', min_round, max_round,
                                                 (suggest_min_round, max_round), 1)

    select_metric = st.selectbox('Choose a metric', list(histtrend_opt.keys()), index=0,
                                 format_func=lambda x: histtrend_opt[x])
    round_range = [min_selectround, max_selectround]
    round_list = [r for r in range(min_selectround, max_selectround + 1)]
    round_data = round_data[round_data['roundNumber'].isin(round_list)]
    mean_df = round_data.groupby(['model'])[select_metric].agg('mean').reset_index()
    mean_df[f'model avg.'] = mean_df['model'] + ': ' + mean_df[select_metric].round(5).astype(str)
    mean_df['mean'] = mean_df[select_metric]
    merge_cols = ['model', 'model avg.', 'mean']
    round_data = round_data.merge(right=mean_df[merge_cols], on='model', how='left').sort_values(by=['mean','model', 'roundNumber'], ascending=False)
    fig = chart_pxline(round_data, 'roundNumber', y=select_metric, color='model avg.', hover_data=list(histtrend_opt.keys())+['roundResolveTime'],x_range=round_range)
    if fig is not None:
        st.plotly_chart(fig, use_container_width=True)






def histtrend():
    # default_models = ['yxbot']
    # models = default_models.copy()
    data = st.session_state['model_data'].copy()
    models = data['model'].unique().tolist()
    model_selection = []
    default_models = model_fast_picker(models)
    if len(models)>0:
        if len(default_models)==0:
            default_models = [models[0]]
        model_selection = st.sidebar.multiselect('select models for chart', models, default=default_models)

    if len(model_selection)>0:
        roundresult_chart(data, model_selection)

        # fig = px.line(df, x='roundNumber', y='corr', color='model', hover_data=['corr_pct'])
        # st.write(model_selection)
    else:
        if len(model_selection)==0:
            st.info('please select some models from the dropdown list')
        else:
            st.info('model result data file missing, or no model is selected')

    # st.write(models)



def model_evaluation():
    data = st.session_state['model_data'].copy()
    models = data['model'].unique().tolist()
    model_selection = []
    default_models = model_fast_picker(models)
    mean_scale = [-0.05, 0.1]
    count_scale = [1, 50]
    sharpe_scale = [-0.2, 2]
    pct_scale = [0, 1]
    radar_scale = [0, 5]

    if len(models)>0:
        if len(default_models)==0:
            default_models = [models[0]]
        model_selection = st.sidebar.multiselect('select models for chart', models, default=default_models)

    if len(model_selection)>0:
        round_data = data[data['model'].isin(model_selection)].drop_duplicates(['model', 'roundNumber'],keep='first').reset_index(drop=True)
        min_round = int(round_data['roundNumber'].min())
        max_round = int(round_data['roundNumber'].max())
        suggest_min_round = max_round - 20
        if min_round == max_round:
            min_round = max_round - 20

        min_selectround, max_selectround = st.slider('select plotting round range', min_round, max_round,
                                                     (suggest_min_round, max_round), 1)
        round_list = [r for r in range(min_selectround, max_selectround+1)]
        # defaultlist = ['corr_sharpe', 'tc_sharpe',  'corrtc_sharpe','corr_mean', 'tc_mean' 'corrtc_mean', 'corrtc_avg_pct','count']

        defaultlist = ['corr_sharpe', 'tc_sharpe',  'corrtc_sharpe', 'corr_mean', 'tc_mean', 'corrtc_mean', 'corrtc_avg_pct_mean']

        select_metrics = st.multiselect('Metric Selection', list(model_eval_opt.keys()),
                                     format_func=lambda x: model_eval_opt[x], default=defaultlist)


        round_data = round_data[round_data['roundNumber'].isin(round_list)].reset_index(drop=True)
        #'need normalised radar chart + tabular view here
        roundmetric_df = get_roundmetric_data(round_data).sort_values(by='corrtc_sharpe', ascending=False).reset_index(drop=True)

        radarmetric_df = roundmetric_df.copy(deep=True)
        for col in select_metrics:
            if 'mean' in col:
                use_scale = mean_scale
            if 'sharpe' in col:
                use_scale = sharpe_scale
            if 'pct' in col:
                use_scale = pct_scale
            if 'count' in col:
                use_scale = count_scale
            radarmetric_df[col] = radarmetric_df[col].apply(lambda x: project_utils.rescale(x, use_scale, radar_scale))
        select_metrics_name = [model_eval_opt[i] for i in select_metrics]
        radarmetric_df.rename(columns=model_eval_opt, inplace=True)
        roundmetric_df.rename(columns=model_eval_opt, inplace=True)

        fig = go.Figure()
        for i in range(len(radarmetric_df)):
            fig.add_trace(go.Scatterpolar(
                r=radarmetric_df.loc[i, select_metrics_name].values,
                theta=select_metrics_name,
                fill='toself',
                name=radarmetric_df['model'].values[i]
            ))

        fig.update_polars(
            radialaxis=dict(visible=True, autorange=False, #type='linear',
                            range=[0,5])
        )

        fig.update_layout(plot_bgcolor='black', paper_bgcolor='black', font_color='aliceblue',
                          height=max_height+100,
                          margin=dict(l=0, r=10, t=20, b=20), showlegend=True)

        st.plotly_chart(fig, use_container_width=True)
        st.text('Calculated Metrics')
        st.dataframe(roundmetric_df[['model'] + select_metrics_name], height=max_table_height)
        st.text('Rescaled Metrics on Chart')
        st.dataframe(radarmetric_df[['model'] + select_metrics_name], height=max_table_height)

        # st.write(select_metrics)


def get_portfolio_overview(models, onlylatest=True):
    res_df = []
    my_bar = st.progress(0.0)
    my_bar.progress(0.0)
    percent_complete = 0.0
    for i in range(len(models)):
        m = models[i]
        try:
            if onlylatest:
                # mdf = numerapi_utils.get_model_history(m).loc[0:0]
                mdf = numerapi_utils.get_model_history_v3(m).loc[0:0]
            else:
                # mdf = numerapi_utils.get_model_history(m)
                mdf = numerapi_utils.get_model_history_v3(m)
            res_df.append(mdf)
        except:
            # st.info(f'no information for model {m} is available')
            pass
        percent_complete += 1 / len(models)
        if i == len(models) - 1:
            percent_complete = 1.0
        time.sleep(0.1)
        my_bar.progress(percent_complete)
    try:
        res_df = pd.concat(res_df, axis=0)
        res_df['profitability'] = res_df['realised_pl']/(res_df['current_stake']-res_df['realised_pl'])
        cols = ['model', 'date', 'current_stake', 'floating_stake', 'floating_pl', 'realised_pl', 'profitability', 'roundNumber', 'roundResolved', 'payout']

        # res_df['date'] = res_df['date'].dt.date
        if onlylatest:
            res_df = res_df.sort_values(by='floating_pl', ascending=False).reset_index(drop=True)
            return res_df[cols]
        else:
            return res_df[cols]
    except:
        return []


def get_stake_type(corr, mmc):
    if mmc>0:
        res = str(int(corr)) + 'xCORR ' + str(int(mmc)) +'xMMC'
    else:
        res = '1xCORR'
    return res


@st.cache(suppress_st_warning=True)
def get_stake_by_liverounds(models):
    latest_round_id = int(project_utils.get_latest_round_id())
    roundlist = [i for i in range(latest_round_id, latest_round_id - 5, -1)]
    res = []
    my_bar = st.progress(0.0)
    my_bar.progress(0.0)
    percent_complete = 0.0
    percent_part = 0
    for r in roundlist:
        for m in models:
            percent_complete += 1 / (len(models)*len(roundlist))
            try:
                data = numerapi_utils.get_round_model_performance(r, m)
                # print(f'successfuly extract for model {m} in round {r}')
                res.append(data)
            except:
                pass
                # print(f'no result found for model {m} in round {r}')
            if percent_part == (len(models)*len(roundlist)) - 1:
                percent_complete = 1.0
            time.sleep(0.1)
            my_bar.progress(percent_complete)
            percent_part +=1
    res_df = pd.DataFrame.from_dict(res).fillna(0)
    res_df['payoutPending'] = res_df['payoutPending'].astype(np.float64)
    res_df['selectedStakeValue'] = res_df['selectedStakeValue'].astype(np.float64)
    res_df['stake_type'] = res_df.apply(lambda x: get_stake_type(x['corrMultiplier'], x['mmcMultiplier']),axis=1)
    rename_dict = {'selectedStakeValue': 'stake', 'payoutPending': 'payout', 'correlation':'corr'}
    res_df = res_df.rename(columns=rename_dict)
    col_ord = ['model', 'roundNumber', 'stake', 'payout', 'stake_type',  'corr', 'mmc']
    return res_df[col_ord]



def get_stake_graph(data):
    numfeats = ['current_stake', 'floating_stake', 'floating_pl', 'realised_pl']
    stat1 = ['sum']
    agg_rcp = [[['date'], numfeats, stat1]]

    select_opt = st.selectbox('Select Time Span', list(stakeoverview_plot_opt.keys()), index=1, format_func=lambda x: stakeoverview_plot_opt[x])

    res = project_utils.groupby_agg_execution(agg_rcp, data)['date']
    w5delta = datetime.timedelta(weeks=5)
    w13delta = datetime.timedelta(weeks=13)
    date_w5delta = res['date'].max() - w5delta
    date_w13delta = res['date'].max() - w13delta
    y1delta = datetime.timedelta(weeks=52)
    date_y1delta = res['date'].max() - y1delta

    rename_dict = {'date_current_stake_sum': 'total_stake', 'date_floating_stake_sum': 'floating_stake',
                   'date_floating_pl_sum': 'floating_pl', 'date_realised_pl_sum': 'realised_pl'}
    res = res.rename(columns=rename_dict)
    if select_opt == '1month':
        res = res[res['date']>date_w5delta]
    elif select_opt=='3month':
        res = res[res['date']>date_w13delta]
    elif select_opt=='1year':
        res = res[res['date']>date_y1delta]
    else:
        pass

    fig = make_subplots(specs=[[{"secondary_y": True}]])
    fig.add_trace( go.Scatter(x=res['date'], y=res['floating_stake'], name="floating_stake"), secondary_y=False,)

    fig.add_trace(go.Scatter(x=res['date'], y=res['total_stake'], name="total_stake"),secondary_y=False,)

    fig.add_trace(go.Scatter(x=res['date'], y=res['realised_pl'], name="realised_pl"),secondary_y=True,)
    fig.update_layout(plot_bgcolor='black', paper_bgcolor='black', font_color='white')
    fig.update_xaxes(showgrid=False, range=None, nticks=30)
    fig.update_yaxes(gridcolor='grey', title_text="total stake/floating stake/realised PL", secondary_y=False)
    fig.update_yaxes(showgrid=False, title_text="realised PL", zeroline=False,secondary_y=True)
    st.plotly_chart(fig, use_container_width=True)

#
# def live_round_stakeview(data):
#     models = data
#     latest_round_id = int(project_utils.get_latest_round_id())
#     roundlist = [i for i in range(latest_round_id, latest_round_id-4, -1]


def check_session_state(key):
    # st.write(data)
    if key in st.session_state:
        return st.session_state[key]
    else:
        return None


def stake_overview():
    # data = st.session_state['models'].copy()
    models = st.session_state['models'].copy()
    model_selection = []
    baseline_models = []
    model_dict = default_model_picker()
    for k in model_dict.keys():
        baseline_models += model_dict[k]

    default_models = model_fast_picker(models)

    if len(models)>0:
        # if len(default_models)==0:
        #     default_models = baseline_models[0]
        model_selection = st.sidebar.multiselect('select models for chart', models, default=default_models)

    redownload_data = False
    # download = st.sidebar.button('download stake data')
    if len(model_selection) > 0:
        if 'stake_df' not in st.session_state:
            redownload_data = True
        else:
            if set(model_selection)!=st.session_state['stake_overview_models']:
                redownload_data = True
            else:
                ovdf = st.session_state['stake_df']
        if redownload_data:
            ovdf = get_portfolio_overview(model_selection, onlylatest=False)
            st.session_state['stake_df'] = ovdf
            st.session_state['stake_overview_models'] = set(ovdf['model'].unique().tolist())

        chartdf = ovdf.copy(deep=True)
        ovdf = ovdf.drop_duplicates('model', keep='first')
        ovdf = ovdf.sort_values(by='floating_pl', ascending=False).reset_index(drop=True)
        if len(ovdf) > 0:
            overview_cols = ['model', 'current_stake', 'floating_stake', 'floating_pl', 'realised_pl']
            date_text = datetime.datetime.now().strftime(project_config.DATETIME_FORMAT3)
            ovdf.drop(['date'], axis=1, inplace=True)
            stake_cts = st.columns(2)
            pl_cts = st.columns(2)
            date_label = st.empty()
            get_stake_graph(chartdf)
            ovdf_exp = st.expander('stake data overview', expanded=True)
            with ovdf_exp:
                st.dataframe(ovdf[overview_cols], height=max_table_height)
            total_current_stake = round(ovdf['current_stake'].sum(), 3)
            total_floating_stake = round(ovdf['floating_stake'].sum(), 3)
            rpl = round(ovdf['realised_pl'].sum(), 3)
            fpl = round(ovdf['floating_pl'].sum(), 3)
            current_stake_str = f'### Stake Balance: {total_current_stake:0.3f} NMR'
            float_stake_str = f'### Floating Balance: {total_floating_stake:0.3f} NMR'
            if rpl >= 0:
                real_pl_color = 'green'
            else:
                real_pl_color = 'red'
            if fpl >= 0:
                float_pl_color = 'green'
            else:
                float_pl_color = 'red'
            real_pl_str = f'### Realised P/L: <span style="color:{real_pl_color}">{rpl}</span> NMR'
            float_pl_str = f'### Floating P/L: <span style="color:{float_pl_color}">{fpl}</span> NMR'
            stake_cts[0].markdown(current_stake_str, unsafe_allow_html=True)
            stake_cts[1].markdown(float_stake_str, unsafe_allow_html=True)
            pl_cts[0].markdown(real_pl_str, unsafe_allow_html=True)
            pl_cts[1].markdown(float_pl_str, unsafe_allow_html=True)
            date_label.subheader(f'Date: {date_text}')
        if st.sidebar.checkbox('show breakdown by live rounds', value=False):
            liveround_exp = st.expander('show breakdown by live rounds (requires extra data downloading)',expanded=True)
            with liveround_exp:
                stake_models = ovdf['model'].tolist()
                liveround_stake_df = get_stake_by_liverounds(stake_models)
                round_view(liveround_stake_df,'live_round_stake')
        if st.sidebar.checkbox('show resolved round summary', value=False):
            resolvedround_exp = st.expander('show resolved rounds summary for selected model group', expanded=True)
            with resolvedround_exp:
                get_roundresolve_history(chartdf)
                # st.write(chartdf)


def get_roundresolve_history(data):
    resolved_rounds = data[data['roundResolved'] == True]['roundNumber'].unique().tolist()
    rsdf = data[data['roundResolved'] == True].reset_index(drop=True)
    rs_date = rsdf[['date', 'roundNumber']].drop_duplicates('roundNumber').reset_index(drop=True)
    numfeats = ['current_stake', 'payout']
    stat1 = ['sum']
    agg_rcp = [[['roundNumber'], numfeats, stat1]]
    res = project_utils.groupby_agg_execution(agg_rcp, rsdf)['roundNumber'].sort_values(by='roundNumber',
                                                                                        ascending=False)
    res = res.merge(right=rs_date, on='roundNumber')

    rename_dict = {'roundNumber': 'Round', 'roundNumber_current_stake_sum': 'Total Stake',
                   'roundNumber_payout_sum': 'Round P/L', 'date': 'Resolved Date'}
    res.rename(columns=rename_dict, inplace=True)
    st.write(res)




def app_setting():
    pfm_exp = st.expander('Perormance Data Setting', expanded=True)
    with pfm_exp:
        pfm_default_model= st.checkbox('download data for default model', value=True)

    stake_exp = st.expander('stake overview data setting', expanded=True)
    if st.button('confirm settiong'):
        st.session_state['pfm_default_model'] = pfm_default_model



def performance_overview():
    # st.sidebar.subheader('Choose a Table View')
    select_app = st.sidebar.selectbox("", list(pfm_opt.keys()), index=0, format_func=lambda x: pfm_opt[x])
    if select_app=='data_op':
        data_operation()
    if select_app=='liveround_view':
        score_overview()
    if select_app=='metric_view':
        metric_overview()
    if select_app=='historic_trend':
        histtrend()
    if select_app=='model_evaluation':
        model_evaluation()



def show_content():
    st.sidebar.header('Dashboard Selection')
    select_app = st.sidebar.selectbox("", list(app_opt.keys()), index=1, format_func=lambda x: app_opt[x])
    if select_app=='performance_overview':
        performance_overview()
    if select_app=='stake_overview':
        stake_overview()
    if select_app=='app_setting':
        app_setting()


# main body
# various configuration setting
app_opt = {
           'performance_overview' : 'Performance Overview',
           'stake_overview': 'Stake Overview',
           # 'app_setting':''
           }


pfm_opt = {
    'data_op': 'Download Score Data',
    'liveround_view': 'Round Overview',
    'metric_view':'Metric Overview',
    'historic_trend': 'Historic Trend',
    'model_evaluation': 'Model Evaluation',
}



tbl_opt = {
            'round_result':'Round Results',
            'dailyscore_metric':'Daily Score Metrics',
            'round_metric' : 'Round Metrics'
}

id_metric_opt = {
                'id_corr_sharpe':'Daily Score corr sharpe',
                'id_mmc_sharpe': 'Daily Score mmc sharpe',
                'id_corrmmc_sharpe': 'Daily Score corrmmc sharpe',
                'id_corr2mmc_sharpe': 'Daily Score corr2mmc sharpe',
                'id_corrmmcpct_sharpe': 'Daily Score corrmmc avg pct sharpe',
                'id_corr2mmcpct_sharpe': 'Daily Score corr2mmc avg pct sharpe',
                'id_corrpct_sharpe':'Daily Score corr pct sharpe',
                'id_mmcpct_sharpe': 'Daily Score mmc pct sharpe',
}


id_metric_score_dic = {
                'id_corr_sharpe':'corr',
                'id_mmc_sharpe': 'mmc',
                'id_corrmmc_sharpe': 'corrmmc',
                'id_corr2mmc_sharpe': 'corr2mmc',
                'id_corrmmcpct_sharpe': 'cmavg_pct',
                'id_corr2mmcpct_sharpe': 'c2mavg_pct',
                'id_corrpct_sharpe':'corr_pct',
                'id_mmcpct_sharpe': 'mmc_pct'
}


roundmetric_opt ={'corr':'Corr metrics',
                  'tc': 'TC metrics',
                  'corrtc': 'CorrTC metrics',
                  'fncV3': 'FNCV3 metrics',
                  'pct': 'Pecentage metrics',
                  'corrmmc' : 'CorrMMC metrics',
                  'mmc': 'MMC metrics'
}


histtrend_opt = {
                'corr':'Correlation',
                'mmc': 'MMC',
                'tc' : 'TC',
                'corr_pct': 'Correlation Percentile',
                'tc_pct' : 'TC Percentile',
                'mmc_pct':'MMC Percentile',
                'corrmmc': 'Correlation+MMC',
                'corrtc': 'Correlation+TC',
                'corrtc_avg_pct': 'Correlation+TC Average Percentile',
                'corrmmc_avg_pct': 'Correlation+MMC Average Percentile',

}


model_eval_opt = {
        'corr_sharpe' : 'Correlation Sharpe',
        'mmc_sharpe' : 'MMC Sharpe',
        'tc_sharpe' : 'TC Sharpe',
        'corrtc_sharpe': 'Correlation+TC Sharpe',
        'corrmmc_sharpe' : 'Correlation+MMC Sharpe',
        'corr_mean':'Avg. Correlation',
        'tc_mean': 'Avg. TC',
        'count': 'Number of Rounds',
        'mmc_mean':'Avg. MMC',
        'corrtc_mean': 'Avg. Correlation+TC',
        'corrmmc_mean': 'Avg. Correlation+MMC',
        'corr_pct_mean': 'Avg. Correlation Percentile',
        'mmc_pct_mean': 'Avg. MMC Percentile',
        'corrmmc_avg_pct_mean': 'Avg. Correlation+MMC Percentile',
        'corrtc_avg_pct_mean': 'Avg. Correlation+TC Percentile',
}

stakeoverview_plot_opt = {
    '1month':'1 Month',
    '3month':'3 Months',
    '1year':'1 Year',
    'all':'Display all available data'
}

def show_session_status_info():
    # 'raw_performance_data'
    key1 = 'model_data'
    key2 = 'models'
    if check_session_state(key1) is None:
        st.write(f'{key1} is None')
    else:
        st.write(f'{key1} shape is {st.session_state[key1].shape}')

    if check_session_state(key2) is None:
        st.write(f'{key2} is None')
    else:
        st.write(f'{key2} list has {len(st.session_state[key2])} models')
    pass



project_utils.reload_project()

height_exp = st.sidebar.expander('Plots and tables setting', expanded=False)
with height_exp:
    max_height = st.slider('Please choose the height for plots', 100, 1000, 400, 50)
    max_table_height = st.slider('Please choose the height for tables', 100, 1000, 500, 50)


st.title('Numerai Dashboard')
# key = 'pfm_default_model'
# if check_session_state('pfm_default_model') is None:
#     st.write('set value')
#     st.session_state['pfm_default_model'] = True
# else:
#     st.write('use set value')
#
# st.write(st.session_state)

df = get_saved_data()

if check_session_state('models') is None:
    with st.spinner('updating model list'):
        st.session_state['models'] = numerapi_utils.get_lb_models()

# debug purpose only
# show_session_status_info()

show_content()