|
import torch |
|
|
|
import gradio as gr |
|
import yt_dlp as youtube_dl |
|
import numpy as np |
|
from datasets import Dataset, Audio |
|
from scipy.io import wavfile |
|
|
|
from transformers import pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
import tempfile |
|
import os |
|
import time |
|
import demucs.api |
|
|
|
MODEL_NAME = "openai/whisper-large-v3" |
|
DEMUCS_MODEL_NAME = "htdemucs_ft" |
|
BATCH_SIZE = 8 |
|
FILE_LIMIT_MB = 1000 |
|
YT_LENGTH_LIMIT_S = 3600 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
separator = demucs.api.Separator(model = DEMUCS_MODEL_NAME, ) |
|
|
|
def separate_vocal(path): |
|
origin, separated = separator.separate_audio_file(path) |
|
demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate) |
|
return path |
|
|
|
|
|
def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, progress=gr.Progress()): |
|
if inputs_path is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
if dataset_name is None: |
|
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.") |
|
|
|
if oauth_token is None: |
|
gr.Warning("Make sure to click and login before using this demo.") |
|
return [["transcripts will appear here"]], "" |
|
|
|
total_step = 4 |
|
current_step = 0 |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Transcribe using Whisper.") |
|
|
|
sampling_rate, inputs = wavfile.read(inputs_path) |
|
|
|
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) |
|
|
|
text = out["text"] |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Merge chunks.") |
|
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate) |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Create dataset.") |
|
|
|
|
|
transcripts = [] |
|
audios = [] |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for)")): |
|
|
|
|
|
arr = chunk["audio"] |
|
path = os.path.join(tmpdirname, f"{i}.wav") |
|
wavfile.write(path, sampling_rate, arr) |
|
|
|
if use_demucs == "separate-audio": |
|
|
|
print(f"Separating vocals #{i}") |
|
path = separate_vocal(path) |
|
|
|
audios.append(path) |
|
transcripts.append(chunk["text"]) |
|
|
|
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio()) |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Push dataset.") |
|
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token) |
|
|
|
return [[transcript] for transcript in transcripts], text |
|
|
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
|
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
|
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000, |
|
progress=gr.Progress()): |
|
|
|
if yt_url is None: |
|
raise gr.Error("No youtube link submitted! Please put a working link.") |
|
if dataset_name is None: |
|
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.") |
|
|
|
total_step = 5 |
|
current_step = 0 |
|
|
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
|
|
if oauth_token is None: |
|
gr.Warning("Make sure to click and login before using this demo.") |
|
return html_embed_str, [["transcripts will appear here"]], "" |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Load video.") |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
|
|
download_yt_audio(yt_url, filepath) |
|
with open(filepath, "rb") as f: |
|
inputs_path = f.read() |
|
|
|
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Transcribe using Whisper.") |
|
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) |
|
|
|
text = out["text"] |
|
|
|
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate) |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Merge chunks.") |
|
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate) |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Create dataset.") |
|
|
|
transcripts = [] |
|
audios = [] |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for).")): |
|
|
|
|
|
arr = chunk["audio"] |
|
path = os.path.join(tmpdirname, f"{i}.wav") |
|
wavfile.write(path, dataset_sampling_rate, arr) |
|
|
|
if use_demucs == "separate-audio": |
|
|
|
print(f"Separating vocals #{i}") |
|
path = separate_vocal(path) |
|
|
|
audios.append(path) |
|
transcripts.append(chunk["text"]) |
|
|
|
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio()) |
|
|
|
current_step += 1 |
|
progress((current_step, total_step), desc="Push dataset.") |
|
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token) |
|
|
|
|
|
return html_embed_str, [[transcript] for transcript in transcripts], text |
|
|
|
|
|
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5): |
|
|
|
|
|
|
|
min_duration = int(min_duration * sampling_rate) |
|
|
|
|
|
new_chunks = [] |
|
while chunks: |
|
current_chunk = chunks.pop(0) |
|
|
|
begin, end = current_chunk["timestamp"] |
|
begin, end = int(begin*sampling_rate), int(end*sampling_rate) |
|
|
|
current_dur = end-begin |
|
|
|
text = current_chunk["text"] |
|
|
|
|
|
chunk_to_concat = [audio_array[begin:end]] |
|
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)): |
|
ch = chunks.pop(0) |
|
begin, end = ch["timestamp"] |
|
begin, end = int(begin*sampling_rate), int(end*sampling_rate) |
|
current_dur += end-begin |
|
|
|
text = "".join([text, ch["text"]]) |
|
|
|
|
|
chunk_to_concat.append(audio_array[begin:end]) |
|
|
|
|
|
new_chunks.append({ |
|
"text": text.strip(), |
|
"audio": np.concatenate(chunk_to_concat), |
|
}) |
|
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s") |
|
|
|
return new_chunks |
|
|
|
|
|
|
|
css = """ |
|
#intro{ |
|
max-width: 100%; |
|
text-align: center; |
|
margin: 0 auto; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Row(): |
|
gr.LoginButton() |
|
gr.LogoutButton() |
|
|
|
with gr.Tab("YouTube"): |
|
gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro") |
|
gr.Markdown( |
|
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it." |
|
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files" |
|
" of arbitrary length. It then merge chunks of audio and push it to the hub." |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL") |
|
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") |
|
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio") |
|
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name") |
|
|
|
with gr.Row(): |
|
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube]) |
|
submit_youtube = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
html_youtube = gr.HTML() |
|
dataset_youtube = gr.Dataset(label="Transcribed samples.",components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]]) |
|
transcript_youtube = gr.Textbox(label="Transcription") |
|
|
|
with gr.Tab("Microphone or Audio file"): |
|
gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro") |
|
gr.Markdown( |
|
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it." |
|
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files" |
|
" of arbitrary length. It then merge chunks of audio and push it to the hub." |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_file = gr.Audio(type="filepath") |
|
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") |
|
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio") |
|
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name") |
|
|
|
with gr.Row(): |
|
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file]) |
|
submit_file = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]]) |
|
transcript_file = gr.Textbox(label="Transcription") |
|
|
|
|
|
|
|
submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file]) |
|
submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, dataset_youtube, transcript_youtube]) |
|
|
|
demo.launch(debug=True) |