File size: 13,552 Bytes
8e73e42 3551573 9d3c210 3551573 8e73e42 3551573 8a2eb00 8e73e42 8a2eb00 35d4f1f 8a2eb00 8e73e42 8a2eb00 8e73e42 8a2eb00 3551573 8a2eb00 8e73e42 8a2eb00 3551573 8e73e42 3551573 8e73e42 3551573 8e73e42 94eb218 8e73e42 8a2eb00 8e73e42 8a2eb00 8e73e42 8a2eb00 35d4f1f 8a2eb00 35d4f1f 8a2eb00 8e73e42 8a2eb00 8e73e42 cedfb7c 8e73e42 8a2eb00 cedfb7c 3551573 cedfb7c 8e73e42 8a2eb00 3551573 8a2eb00 8e73e42 8a2eb00 3551573 8e73e42 3551573 8e73e42 3551573 8e73e42 94eb218 8e73e42 8a2eb00 8e73e42 8a2eb00 8e73e42 3551573 8a2eb00 3551573 8e73e42 8a2eb00 8e73e42 3551573 8e73e42 3551573 8e73e42 3551573 8e73e42 3551573 13cdda1 8e73e42 3551573 8e73e42 3551573 8a2eb00 8e73e42 6acebe0 8a2eb00 8e73e42 8a2eb00 641fe7d 8a2eb00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
import gradio as gr
import yt_dlp as youtube_dl
import numpy as np
from datasets import Dataset, Audio
from scipy.io import wavfile
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
import demucs.api
MODEL_NAME = "openai/whisper-large-v3" # "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram" #
DEMUCS_MODEL_NAME = "htdemucs_ft"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
separator = demucs.api.Separator(model = DEMUCS_MODEL_NAME, )
def separate_vocal(path):
origin, separated = separator.separate_audio_file(path)
demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
return path
def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, progress=gr.Progress()):
if inputs_path is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
if dataset_name is None:
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
if oauth_token is None:
gr.Warning("Make sure to click and login before using this demo.")
return [["transcripts will appear here"]], ""
total_step = 4
current_step = 0
current_step += 1
progress((current_step, total_step), desc="Transcribe using Whisper.")
sampling_rate, inputs = wavfile.read(inputs_path)
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
text = out["text"]
current_step += 1
progress((current_step, total_step), desc="Merge chunks.")
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate)
current_step += 1
progress((current_step, total_step), desc="Create dataset.")
transcripts = []
audios = []
with tempfile.TemporaryDirectory() as tmpdirname:
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for)")):
# TODO: make sure 1D or 2D?
arr = chunk["audio"]
path = os.path.join(tmpdirname, f"{i}.wav")
wavfile.write(path, sampling_rate, arr)
if use_demucs == "separate-audio":
# use demucs tp separate vocals
print(f"Separating vocals #{i}")
path = separate_vocal(path)
audios.append(path)
transcripts.append(chunk["text"])
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
current_step += 1
progress((current_step, total_step), desc="Push dataset.")
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
return [[transcript] for transcript in transcripts], text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000,
progress=gr.Progress()):
if yt_url is None:
raise gr.Error("No youtube link submitted! Please put a working link.")
if dataset_name is None:
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
total_step = 5
current_step = 0
html_embed_str = _return_yt_html_embed(yt_url)
if oauth_token is None:
gr.Warning("Make sure to click and login before using this demo.")
return html_embed_str, [["transcripts will appear here"]], ""
current_step += 1
progress((current_step, total_step), desc="Load video.")
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs_path = f.read()
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
current_step += 1
progress((current_step, total_step), desc="Transcribe using Whisper.")
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
text = out["text"]
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
current_step += 1
progress((current_step, total_step), desc="Merge chunks.")
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
current_step += 1
progress((current_step, total_step), desc="Create dataset.")
transcripts = []
audios = []
with tempfile.TemporaryDirectory() as tmpdirname:
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for).")):
# TODO: make sure 1D or 2D?
arr = chunk["audio"]
path = os.path.join(tmpdirname, f"{i}.wav")
wavfile.write(path, dataset_sampling_rate, arr)
if use_demucs == "separate-audio":
# use demucs tp separate vocals
print(f"Separating vocals #{i}")
path = separate_vocal(path)
audios.append(path)
transcripts.append(chunk["text"])
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
current_step += 1
progress((current_step, total_step), desc="Push dataset.")
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
return html_embed_str, [[transcript] for transcript in transcripts], text
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5):
# merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
# return list of dictionnaries (text, audio)
# min duration is in seconds
min_duration = int(min_duration * sampling_rate)
new_chunks = []
while chunks:
current_chunk = chunks.pop(0)
begin, end = current_chunk["timestamp"]
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
current_dur = end-begin
text = current_chunk["text"]
chunk_to_concat = [audio_array[begin:end]]
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
ch = chunks.pop(0)
begin, end = ch["timestamp"]
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
current_dur += end-begin
text = "".join([text, ch["text"]])
# TODO: add silence ?
chunk_to_concat.append(audio_array[begin:end])
new_chunks.append({
"text": text.strip(),
"audio": np.concatenate(chunk_to_concat),
})
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
return new_chunks
css = """
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
gr.LoginButton()
gr.LogoutButton()
with gr.Tab("YouTube"):
gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro")
gr.Markdown(
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
" of arbitrary length. It then merge chunks of audio and push it to the hub."
)
with gr.Row():
with gr.Column():
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
with gr.Row():
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
submit_youtube = gr.Button("Submit")
with gr.Column():
html_youtube = gr.HTML()
dataset_youtube = gr.Dataset(label="Transcribed samples.",components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
transcript_youtube = gr.Textbox(label="Transcription")
with gr.Tab("Microphone or Audio file"):
gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro")
gr.Markdown(
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
" of arbitrary length. It then merge chunks of audio and push it to the hub."
)
with gr.Row():
with gr.Column():
audio_file = gr.Audio(type="filepath")
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
with gr.Row():
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
submit_file = gr.Button("Submit")
with gr.Column():
dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
transcript_file = gr.Textbox(label="Transcription")
submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file])
submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, dataset_youtube, transcript_youtube])
demo.launch(debug=True) |