LN3Diff_I23D / nsr /lsgm /flow_matching_trainer.py
NIRVANALAN
init
11e6f7b
raw
history blame
31.3 kB
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
from click import prompt
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder
import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# ! add new schedulers from https://github.com/Stability-AI/generative-models
from .crossattn_cldm import TrainLoop3DDiffusionLSGM_crossattn
# import SD stuffs
from typing import Any, Dict, List, Optional, Tuple, Union
from contextlib import contextmanager
from omegaconf import ListConfig, OmegaConf
from sgm.modules import UNCONDITIONAL_CONFIG
from sgm.util import (default, disabled_train, get_obj_from_str,
instantiate_from_config, log_txt_as_img)
from transport import create_transport, Sampler
# from sgm.sampling_utils.demo.streamlit_helpers import init_sampling
class FlowMatchingEngine(TrainLoop3DDiffusionLSGM_crossattn):
def __init__(
self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1,
cfg_dropout_prob=0,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
snr_type='lognorm',
# denoiser_config,
# conditioner_config: Union[None, Dict, ListConfig,
# OmegaConf] = None,
# sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
# loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
normalize_clip_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding,
cfg_dropout_prob=cfg_dropout_prob,
cond_key=cond_key,
use_eos_feature=use_eos_feature,
compile=compile,
**kwargs)
# ! sgm diffusion pipeline
# ! reuse the conditioner
if self.cond_key == 'caption':
ldm_configs = OmegaConf.load(
'sgm/configs/t23d-clipl-compat-fm.yaml')['ldm_configs']
else:
assert 'lognorm' in snr_type
if snr_type == 'lognorm': # by default
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm.yaml')['ldm_configs']
# elif snr_type == 'lognorm-mv':
# ldm_configs = OmegaConf.load(
# 'sgm/configs/mv23d-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
elif snr_type == 'lognorm-mv-plucker':
ldm_configs = OmegaConf.load(
# 'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm.yaml')['ldm_configs']
'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
else:
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm.yaml')['ldm_configs']
self.loss_fn = (
instantiate_from_config(ldm_configs.loss_fn_config)
# if loss_fn_config is not None
# else None
)
# self.denoiser = instantiate_from_config(
# ldm_configs.denoiser_config).to(dist_util.dev())
self.transport_sampler = Sampler(self.loss_fn.transport)
self.conditioner = instantiate_from_config(
default(ldm_configs.conditioner_config,
UNCONDITIONAL_CONFIG)).to(dist_util.dev())
# ! setup optimizer (with cond embedder params here)
self._setup_opt2()
self._load_model2()
def _setup_opt(self):
pass # see below
def _setup_opt2(self):
# ! add trainable conditioner parameters
# https://github.com/Stability-AI/generative-models/blob/fbdc58cab9f4ee2be7a5e1f2e2787ecd9311942f/sgm/models/diffusion.py#L219
# params = list(self.ddpm_model.parameters())
self.opt = AdamW([{
'name': 'ddpm',
'params': self.ddpm_model.parameters(),
},
],
lr=self.lr,
weight_decay=self.weight_decay)
embedder_params = []
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
embedder_params = embedder_params + list(embedder.parameters())
if len(embedder_params) != 0:
self.opt.add_param_group(
{
'name': 'embedder',
'params': embedder_params,
'lr': self.lr*0.1, # smaller lr to finetune dino/clip
}
)
# if self.train_vae:
# for rec_param_group in self._init_optim_groups(self.rec_model):
# self.opt.add_param_group(rec_param_group)
print(self.opt)
def save(self, mp_trainer=None, model_name='ddpm'):
# save embedder params also
super().save(mp_trainer, model_name)
# save embedder ckpt
if dist_util.get_rank() == 0:
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
# embedder_params = embedder_params + list(embedder.parameters())
model_name = embedder.__class__.__name__
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(embedder.state_dict(), f)
dist_util.synchronize()
def _load_model2(self):
# ! load embedder
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
# embedder_params = embedder_params + list(embedder.parameters())
model_name = embedder.__class__.__name__
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
# embedder_FrozenDinov2ImageEmbedderMV2115000.pt
# with bf.BlobFile(bf.join(get_blob_logdir(), filename),
# "wb") as f:
# th.save(embedder.state_dict(), f)
split = self.resume_checkpoint.split("model")
resume_checkpoint = str(
Path(split[0]) / filename)
if os.path.exists(resume_checkpoint):
if dist.get_rank() == 0:
logger.log(
f"loading cond embedder from checkpoint: {resume_checkpoint}...")
# if model is None:
# model = self.model
embedder.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint,
map_location=dist_util.dev(),
))
else:
logger.log(f'{resume_checkpoint} not found.')
if dist_util.get_world_size() > 1:
dist_util.sync_params(embedder.parameters())
def instantiate_cond_stage(self, normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob,
use_eos_feature=False):
pass # placeholder function. initialized in the self.__init__() using SD api
# ! already merged
def prepare_ddpm(self, eps, mode='p'):
raise NotImplementedError('already implemented in self.denoiser')
# merged from noD.py
# use sota denoiser, loss_fn etc.
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
# ! enable the gradient of both models
requires_grad(self.ddpm_model, True)
self.mp_trainer.zero_grad() # !!!!
if 'img' in batch:
batch_size = batch['img'].shape[0]
else:
batch_size = len(batch['caption'])
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
# move condition to self.dtype
# =================================== ae part ===================================
# with th.cuda.amp.autocast(dtype=th.bfloat16,
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
loss = th.tensor(0.).to(dist_util.dev())
assert 'latent' in micro
vae_out = {self.latent_name: micro['latent']}
# else:
# vae_out = self.ddp_rec_model(
# img=micro['img_to_encoder'],
# c=micro['c'],
# behaviour='encoder_vae',
# ) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name] / self.triplane_scaling_divider
# eps = vae_out.pop(self.latent_name)
# if 'bg_plane' in vae_out:
# eps = th.cat((eps, vae_out['bg_plane']),
# dim=1) # include background, B 12+4 32 32
# ! SD loss
# cond = self.get_c_input(micro, bs=eps.shape[0])
micro['img-c'] = {
'img': micro['img'].to(self.dtype),
'c': micro['c'].to(self.dtype),
}
loss, loss_other_info = self.loss_fn(self.ddp_ddpm_model,
# self.denoiser,
self.conditioner,
eps.to(self.dtype),
micro) # type: ignore
loss = loss.mean()
log_rec3d_loss_dict({})
log_rec3d_loss_dict({
# 'eps_mean':
# eps.mean(),
# 'eps_std':
# eps.std([1, 2, 3]).mean(0),
# 'pred_x0_std':
# loss_other_info['model_output'].std([1, 2, 3]).mean(0),
"p_loss":
loss,
})
self.mp_trainer.backward(loss) # joint gradient descent
# update ddpm accordingly
self.mp_trainer.optimize(self.opt)
# ! directly eval_cldm() for sampling.
# if dist_util.get_rank() == 0 and self.step % 500 == 0:
# self.log_control_images(vae_out, micro, loss_other_info)
@th.inference_mode()
def log_control_images(self, vae_out, micro, ddpm_ret):
if 'posterior' in vae_out:
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {self.latent_name: vae_out[self.latent_name][0:1].to(self.dtype)}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
pred = self.ddp_rec_model(latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
pred_img = pred['image_raw']
if 'img' in micro:
gt_img = micro['img']
else:
gt_img = th.zeros_like(pred['image_raw'])
if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
else:
gt_depth = th.zeros_like(gt_img[:, 0:1, ...])
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
gt_img = self.pool_128(gt_img)
gt_depth = self.pool_128(gt_depth)
# cond = self.get_c_input(micro)
# hint = th.cat(cond['c_concat'], 1)
gt_vis = th.cat(
[
gt_img,
gt_img,
gt_img,
# self.pool_128(hint),
# gt_img,
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
# self.sampler
noised_latent, sigmas, x_start = [
ddpm_ret[k] for k in ['noised_input', 'sigmas', 'model_output']
]
noised_latent = {
'latent_normalized_2Ddiffusion':
noised_latent[0:1].to(self.dtype) * self.triplane_scaling_divider,
}
denoised_latent = {
'latent_normalized_2Ddiffusion':
x_start[0:1].to(self.dtype) * self.triplane_scaling_divider,
}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=noised_latent,
behaviour=self.render_latent_behaviour)
# pred_x0 = self.sde_diffusion._predict_x0_from_eps(
# eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=denoised_latent,
# latent=pred_x0[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat(
[
self.pool_128(img) for img in (
pred_img[0:1],
noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1], # controlnet result
pred_depth[0:1].repeat_interleave(3, dim=1))
],
dim=-1) # B, 3, H, W
if 'img' in micro:
vis = th.cat([gt_vis, pred_vis],
dim=-2)[0].permute(1, 2,
0).cpu() # ! pred in range[-1, 1]
else:
vis = pred_vis[0].permute(1, 2, 0).cpu()
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{sigmas[0].item():3}.jpg'
Image.fromarray(vis).save(img_save_path)
# if self.cond_key == 'caption':
# with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f:
# f.write(micro['caption'][0])
print('log denoised vis to: ', img_save_path)
th.cuda.empty_cache()
@th.no_grad()
def sample(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
shape: Union[None, Tuple, List] = None,
use_cfg=True,
# cfg_scale=4, # default value in SiT
# cfg_scale=1.5, # default value in SiT
cfg_scale=4.0, # default value in SiT
**kwargs,
):
# self.sampler
sample_fn = self.transport_sampler.sample_ode(num_steps=250, cfg=True) # default ode sampling setting.
# th.manual_seed(42) # reproducible
zs = th.randn(batch_size, *shape).to(dist_util.dev()).to(self.dtype)
assert use_cfg
# sample_model_kwargs = {'uc': uc, 'cond': cond}
model_fn = self.ddpm_model.forward_with_cfg # default
# ! prepare_inputs in VanillaCFG, for compat issue
c_out = {}
for k in cond:
if k in ["vector", "crossattn", "concat"]:
c_out[k] = th.cat((cond[k], uc[k]), 0)
else:
assert cond[k] == uc[k]
c_out[k] = cond[k]
sample_model_kwargs = {'context': c_out, 'cfg_scale': cfg_scale}
zs = th.cat([zs, zs], 0)
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
samples = sample_fn(zs, model_fn, **sample_model_kwargs)[-1]
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
return samples
@th.inference_mode()
def eval_cldm(
self,
prompt="",
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
num_instances=1,
unconditional_guidance_scale=4.0, # default value in neural ode
export_mesh=False,
**kwargs,
):
# ! slightly modified for new API. combined with
# /cpfs01/shared/V2V/V2V_hdd/yslan/Repo/generative-models/sgm/models/diffusion.py:249 log_images()
# TODO, support batch_size > 1
self.ddpm_model.eval()
# assert unconditional_guidance_scale == 4.0
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
sampling_kwargs = {'cfg_scale': unconditional_guidance_scale}
N = num_samples # hard coded, to update
z_shape = (
N,
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
3 * self.ddpm_model.in_channels, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size)
data = iter(self.data)
def sample_and_save(batch_c,idx=0):
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# st() # do rendering first
# ! get c
(Path(logger.get_dir())/f'{self.step+self.resume_step}').mkdir(exist_ok=True, parents=True)
if 'img' in self.cond_key:
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}/imgcond-{idx}.jpg'
if 'c' in self.cond_key:
torchvision.utils.save_image(batch_c['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
else:
torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0)
assert camera is not None
batch = {'c': camera.clone()[:24]}
# rendering
for i in range(samples.shape[0]):
th.cuda.empty_cache()
# ! render sampled latent
name_prefix = f'idx-{idx}-cfg={unconditional_guidance_scale}_sample-{i}'
if self.cond_key == 'caption':
name_prefix = f'{name_prefix}_{prompt}'
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
self.render_video_given_triplane(
samples[i:i+1].to(self.dtype),
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=export_mesh,
render_all=True)
if self.cond_key == 'caption':
batch_c = {self.cond_key: prompt}
sample_and_save(batch_c)
else:
for idx, batch in enumerate(data):
# batch = next(data) # using same cond here
if self.cond_key == 'img-c':
batch_c = {
self.cond_key: {
'img': batch['img'].to(self.dtype).to(dist_util.dev()),
'c': batch['c'].to(self.dtype).to(dist_util.dev()),
},
'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
}
else:
batch_c = {self.cond_key: batch[self.cond_key].to(dist_util.dev()).to(self.dtype)}
sample_and_save(batch_c, idx)
self.ddpm_model.train()
@th.inference_mode()
def eval_i23d_and_export(
self,
inp_img,
# camera,
prompt="",
save_img=False,
use_train_trajectory=False,
num_samples=1,
num_instances=1,
unconditional_guidance_scale=4.0, # default value in neural ode
export_mesh=True,
**kwargs,
):
output_model, output_video = './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/mesh/cfg=4.0_sample-0.ply', './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/triplane_cfg=4.0_sample-0.mp4'
return output_model, output_video
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:]
inp_img = th.from_numpy(inp_img).permute(2,0,1).unsqueeze(0) / 127.5 - 1 # to [-1,1]
# for gradio demo
self.ddpm_model.eval()
# assert unconditional_guidance_scale == 4.0
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
sampling_kwargs = {'cfg_scale': unconditional_guidance_scale}
N = num_samples # hard coded, to update
z_shape = (
N,
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
3 * self.ddpm_model.in_channels, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size)
# data = iter(self.data)
assert camera is not None
batch = {'c': camera.clone()[:24]}
def sample_and_save(batch_c):
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# rendering
all_vid_dump_path = []
all_mesh_dump_path = []
for i in range(samples.shape[0]):
th.cuda.empty_cache()
# ! render sampled latent
name_prefix = f'cfg={unconditional_guidance_scale}_sample-{i}'
if self.cond_key == 'caption':
name_prefix = f'{name_prefix}_{prompt}'
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
vid_dump_path, mesh_dump_path = self.render_video_given_triplane(
samples[i:i+1].to(self.dtype),
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=export_mesh,
render_all=True)
all_vid_dump_path.append(vid_dump_path)
all_mesh_dump_path.append(mesh_dump_path)
# return all_vid_dump_path, all_mesh_dump_path
return all_vid_dump_path[0], all_mesh_dump_path[0] # for compat issue
if self.cond_key == 'caption':
batch_c = {self.cond_key: prompt}
return sample_and_save(batch_c)
else:
# for idx, batch in enumerate(data):
# batch = next(data) # using same cond here
# if self.cond_key == 'img-c':
# batch_c = {
# self.cond_key: {
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()),
# 'c': batch['c'].to(self.dtype).to(dist_util.dev()),
# },
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
# }
# else:
batch_c = {self.cond_key: inp_img.to(dist_util.dev()).to(self.dtype)}
return sample_and_save(batch_c)