Spaces:
Running
on
Zero
Running
on
Zero
from collections import namedtuple | |
from pdb import set_trace as st | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module | |
""" | |
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) | |
""" | |
# from nsr.networks_stylegan2 import FullyConnectedLayer as EqualLinear | |
# class GradualStyleBlock(Module): | |
# def __init__(self, in_c, out_c, spatial): | |
# super(GradualStyleBlock, self).__init__() | |
# self.out_c = out_c | |
# self.spatial = spatial | |
# num_pools = int(np.log2(spatial)) | |
# modules = [] | |
# modules += [ | |
# Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), | |
# nn.LeakyReLU() | |
# ] | |
# for i in range(num_pools - 1): | |
# modules += [ | |
# Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), | |
# nn.LeakyReLU() | |
# ] | |
# self.convs = nn.Sequential(*modules) | |
# self.linear = EqualLinear(out_c, out_c, lr_multiplier=1) | |
# def forward(self, x): | |
# x = self.convs(x) | |
# x = x.reshape(-1, self.out_c) | |
# x = self.linear(x) | |
# return x | |
# from project.models.model import ModulatedConv2d | |
class DemodulatedConv2d(nn.Module): | |
def __init__(self, | |
in_channel, | |
out_channel, | |
kernel_size=3, | |
stride=1, | |
padding=0, | |
bias=False, | |
dilation=1): | |
super().__init__() | |
# https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/411. fix droplet issue | |
self.eps = 1e-8 | |
if not isinstance(kernel_size, tuple): | |
self.kernel_size = (kernel_size, kernel_size) | |
else: | |
self.kernel_size = kernel_size | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.weight = nn.Parameter( | |
# torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) | |
torch.randn(1, out_channel, in_channel, *kernel_size)) | |
self.bias = None | |
if bias: | |
self.bias = nn.Parameter(torch.randn(out_channel)) | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
def forward(self, input): | |
batch, in_channel, height, width = input.shape | |
demod = torch.rsqrt(self.weight.pow(2).sum([2, 3, 4]) + 1e-8) | |
demod = demod.repeat_interleave(batch, 0) | |
weight = self.weight * demod.view(batch, self.out_channel, 1, 1, 1) | |
weight = weight.view( | |
# batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
batch * self.out_channel, | |
in_channel, | |
*self.kernel_size) | |
input = input.view(1, batch * in_channel, height, width) | |
if self.bias is None: | |
out = F.conv2d(input, | |
weight, | |
padding=self.padding, | |
groups=batch, | |
dilation=self.dilation, | |
stride=self.stride) | |
else: | |
out = F.conv2d(input, | |
weight, | |
bias=self.bias, | |
padding=self.padding, | |
groups=batch, | |
dilation=self.dilation, | |
stride=self.stride) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
return out | |
class Flatten(Module): | |
def forward(self, input): | |
return input.reshape(input.size(0), -1) | |
def l2_norm(input, axis=1): | |
norm = torch.norm(input, 2, axis, True) | |
output = torch.div(input, norm) | |
return output | |
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): | |
""" A named tuple describing a ResNet block. """ | |
def get_block(in_channel, depth, num_units, stride=2): | |
return [Bottleneck(in_channel, depth, stride) | |
] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)] | |
def get_blocks(num_layers): | |
if num_layers == 50: | |
blocks = [ | |
get_block(in_channel=64, depth=64, num_units=3), | |
get_block(in_channel=64, depth=128, num_units=4), | |
get_block(in_channel=128, depth=256, num_units=14), | |
get_block(in_channel=256, depth=512, num_units=3) | |
] | |
elif num_layers == 100: | |
blocks = [ | |
get_block(in_channel=64, depth=64, num_units=3), | |
get_block(in_channel=64, depth=128, num_units=13), | |
get_block(in_channel=128, depth=256, num_units=30), | |
get_block(in_channel=256, depth=512, num_units=3) | |
] | |
elif num_layers == 152: | |
blocks = [ | |
get_block(in_channel=64, depth=64, num_units=3), | |
get_block(in_channel=64, depth=128, num_units=8), | |
get_block(in_channel=128, depth=256, num_units=36), | |
get_block(in_channel=256, depth=512, num_units=3) | |
] | |
else: | |
raise ValueError( | |
"Invalid number of layers: {}. Must be one of [50, 100, 152]". | |
format(num_layers)) | |
return blocks | |
class SEModule(Module): | |
def __init__(self, channels, reduction): | |
super(SEModule, self).__init__() | |
self.avg_pool = AdaptiveAvgPool2d(1) | |
self.fc1 = Conv2d(channels, | |
channels // reduction, | |
kernel_size=1, | |
padding=0, | |
bias=False) | |
self.relu = ReLU(inplace=True) | |
self.fc2 = Conv2d(channels // reduction, | |
channels, | |
kernel_size=1, | |
padding=0, | |
bias=False) | |
self.sigmoid = Sigmoid() | |
def forward(self, x): | |
module_input = x | |
x = self.avg_pool(x) | |
x = self.fc1(x) | |
x = self.relu(x) | |
x = self.fc2(x) | |
x = self.sigmoid(x) | |
return module_input * x | |
class bottleneck_IR(Module): | |
def __init__(self, | |
in_channel, | |
depth, | |
stride, | |
norm_layer=None, | |
demodulate=False): | |
super(bottleneck_IR, self).__init__() | |
if norm_layer is None: | |
norm_layer = BatchNorm2d | |
if demodulate: | |
conv2d = DemodulatedConv2d | |
else: | |
conv2d = Conv2d | |
if in_channel == depth: | |
self.shortcut_layer = MaxPool2d(1, stride) | |
else: | |
self.shortcut_layer = Sequential( | |
# Conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
norm_layer(depth)) | |
# BatchNorm2d(depth) | |
self.res_layer = Sequential( | |
# BatchNorm2d(in_channel), | |
norm_layer(in_channel), | |
# Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
PReLU(depth), | |
# Conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
norm_layer(depth)) | |
# BatchNorm2d(depth)) | |
def forward(self, x): | |
shortcut = self.shortcut_layer(x) | |
res = self.res_layer(x) | |
return res + shortcut | |
class bottleneck_IR_SE(Module): | |
def __init__(self, in_channel, depth, stride): | |
super(bottleneck_IR_SE, self).__init__() | |
if in_channel == depth: | |
self.shortcut_layer = MaxPool2d(1, stride) | |
else: | |
self.shortcut_layer = Sequential( | |
Conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
BatchNorm2d(depth)) | |
self.res_layer = Sequential( | |
BatchNorm2d(in_channel), | |
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
BatchNorm2d(depth), SEModule(depth, 16)) | |
def forward(self, x): | |
shortcut = self.shortcut_layer(x) | |
res = self.res_layer(x) | |
return res + shortcut | |
def _upsample_add(x, y): | |
"""Upsample and add two feature maps. | |
Args: | |
x: (Variable) top feature map to be upsampled. | |
y: (Variable) lateral feature map. | |
Returns: | |
(Variable) added feature map. | |
Note in PyTorch, when input size is odd, the upsampled feature map | |
with `F.upsample(..., scale_factor=2, mode='nearest')` | |
maybe not equal to the lateral feature map size. | |
e.g. | |
original input size: [N,_,15,15] -> | |
conv2d feature map size: [N,_,8,8] -> | |
upsampled feature map size: [N,_,16,16] | |
So we choose bilinear upsample which supports arbitrary output sizes. | |
""" | |
_, _, H, W = y.size() | |
return F.interpolate(x, size=(H, W), mode='bilinear', | |
align_corners=True) + y | |
# from NeuRay | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
groups=groups, | |
bias=False, | |
dilation=dilation, | |
padding_mode='reflect') | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
padding_mode='reflect') | |
class ResidualBlock(nn.Module): | |
def __init__(self, | |
dim_in, | |
dim_out, | |
dim_inter=None, | |
use_norm=True, | |
norm_layer=nn.BatchNorm2d, | |
bias=False): | |
super().__init__() | |
if dim_inter is None: | |
dim_inter = dim_out | |
if use_norm: | |
self.conv = nn.Sequential( | |
norm_layer(dim_in), | |
nn.ReLU(True), | |
nn.Conv2d(dim_in, | |
dim_inter, | |
3, | |
1, | |
1, | |
bias=bias, | |
padding_mode='reflect'), | |
norm_layer(dim_inter), | |
nn.ReLU(True), | |
nn.Conv2d(dim_inter, | |
dim_out, | |
3, | |
1, | |
1, | |
bias=bias, | |
padding_mode='reflect'), | |
) | |
else: | |
self.conv = nn.Sequential( | |
nn.ReLU(True), | |
nn.Conv2d(dim_in, dim_inter, 3, 1, 1), | |
nn.ReLU(True), | |
nn.Conv2d(dim_inter, dim_out, 3, 1, 1), | |
) | |
self.short_cut = None | |
if dim_in != dim_out: | |
self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1) | |
def forward(self, feats): | |
feats_out = self.conv(feats) | |
if self.short_cut is not None: | |
feats_out = self.short_cut(feats) + feats_out | |
else: | |
feats_out = feats_out + feats | |
return feats_out | |
class conv(nn.Module): | |
def __init__(self, num_in_layers, num_out_layers, kernel_size, stride): | |
super(conv, self).__init__() | |
self.kernel_size = kernel_size | |
self.conv = nn.Conv2d(num_in_layers, | |
num_out_layers, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(self.kernel_size - 1) // 2, | |
padding_mode='reflect') | |
self.bn = nn.InstanceNorm2d(num_out_layers, | |
track_running_stats=False, | |
affine=True) | |
def forward(self, x): | |
return F.elu(self.bn(self.conv(x)), inplace=True) | |
class upconv(nn.Module): | |
def __init__(self, num_in_layers, num_out_layers, kernel_size, scale): | |
super(upconv, self).__init__() | |
self.scale = scale | |
self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1) | |
def forward(self, x): | |
x = nn.functional.interpolate(x, | |
scale_factor=self.scale, | |
align_corners=True, | |
mode='bilinear') | |
return self.conv(x) | |