Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
torch.jit.script = lambda f: f | |
import spaces | |
import numpy as np | |
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionControlNetPipeline, | |
UniPCMultistepScheduler, | |
) | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from annotator.util import resize_image, HWC3 | |
from annotator.midas import DepthDetector | |
from annotator.dsine_local import NormalDetector | |
from annotator.upernet import SegmDetector | |
controlnet_checkpoint = "kujiale-ai/controlnet-layout" | |
# Initialize pipeline | |
controlnet = ControlNetModel.from_pretrained( | |
controlnet_checkpoint, | |
subfolder="control_v1_sd15_layout_fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"stablediffusionapi/realistic-vision-v51", controlnet=controlnet, torch_dtype=torch.float16 | |
).to("cuda") | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
apply_depth = DepthDetector() | |
apply_normal = NormalDetector(hf_hub_download("camenduru/DSINE", filename="dsine.pt")) | |
apply_segm = SegmDetector() | |
layout_examples = [ | |
[ | |
"examples/layout_input.jpg", | |
"A modern bedroom", | |
"examples/layout_output.jpg", | |
], | |
[ | |
"examples/living_and_dining_room_input.jpg", | |
"A modern living and dining room", | |
"examples/living_and_dining_room_output.jpg", | |
], | |
[ | |
"examples/living_room_input.png", | |
"A living room", | |
"examples/living_room_output.jpg", | |
], | |
[ | |
"examples/kitchen_input.jpg", | |
"A furnished kitchen", | |
"examples/kitchen_output.jpg", | |
], | |
] | |
def generate( | |
input_image, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_samples, | |
image_resolution, | |
steps, | |
strength, | |
guidance_scale, | |
seed, | |
): | |
color_image = resize_image(HWC3(input_image), image_resolution) | |
# set seed | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
with torch.no_grad(): | |
depth_image = apply_depth(color_image) | |
normal_image = apply_normal(color_image) | |
segm_image = apply_segm(color_image) | |
# Prepare Layout Control Image | |
depth_image = np.array(depth_image, dtype=np.float32) / 255.0 | |
depth_image = torch.from_numpy(depth_image[:, :, None])[None].permute( | |
0, 3, 1, 2 | |
) | |
normal_image = np.array(normal_image, dtype=np.float32) | |
normal_image = normal_image / 127.5 - 1.0 | |
normal_image = torch.from_numpy(normal_image)[None].permute(0, 3, 1, 2) | |
segm_image = np.array(segm_image, dtype=np.float32) / 255.0 | |
segm_image = torch.from_numpy(segm_image)[None].permute(0, 3, 1, 2) | |
control_image = torch.cat([depth_image, normal_image, segm_image], dim=1) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
images = pipe( | |
prompt + a_prompt, | |
negative_prompt=n_prompt, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=steps, | |
image=control_image, | |
generator=generator, | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=float(strength), | |
).images | |
return images | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## KuJiaLe Layout ControlNet Demo") | |
with gr.Row(): | |
gr.Markdown( | |
"### Checkout our released model at [kujiale-ai/controlnet-layout](https://huggingface.co/kujiale-ai/controlnet-layout)" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
sources="upload", type="numpy", label="Input Image", height=512 | |
) | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(value="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider( | |
label="Images", minimum=1, maximum=2, value=1, step=1 | |
) | |
image_resolution = gr.Slider( | |
label="Image Resolution", | |
minimum=512, | |
maximum=768, | |
value=768, | |
step=64, | |
) | |
strength = gr.Slider( | |
label="Control Strength", | |
minimum=0.0, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
) | |
steps = gr.Slider( | |
label="Steps", minimum=1, maximum=50, value=25, step=1 | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
value=7.5, | |
step=0.1, | |
) | |
seed = gr.Slider( | |
label="Seed", minimum=-1, maximum=2147483647, value=1, step=1 | |
) | |
a_prompt = gr.Textbox( | |
label="Added Prompt", value="best quality, extremely detailed" | |
) | |
n_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="longbody, lowres, bad anatomy, human, extra digit, fewer digits, cropped, worst quality, low quality", | |
) | |
with gr.Column(): | |
image_gallery = gr.Gallery( | |
label="Output", | |
show_label=False, | |
elem_id="gallery", | |
height=512, | |
object_fit="contain", | |
) | |
with gr.Row(): | |
dummy_image_for_outputs = gr.Image(visible=False, label="Result") | |
gr.Examples( | |
fn=lambda *args: [[args[-1]], args[-2]], | |
examples=layout_examples, | |
inputs=[input_image, prompt, dummy_image_for_outputs], | |
outputs=[image_gallery, prompt], | |
run_on_click=True, | |
examples_per_page=1024, | |
) | |
ips = [ | |
input_image, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_samples, | |
image_resolution, | |
steps, | |
strength, | |
guidance_scale, | |
seed, | |
] | |
run_button.click(fn=generate, inputs=ips, outputs=[image_gallery]) | |
block.launch(server_name="0.0.0.0") | |