|
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
import json
|
|
|
|
|
|
import gradio as gr
|
|
|
|
|
|
from .common_gui import (
|
|
get_saveasfilename_path,
|
|
get_file_path,
|
|
scriptdir,
|
|
list_files,
|
|
create_refresh_button, setup_environment
|
|
)
|
|
from .custom_logging import setup_logging
|
|
|
|
|
|
log = setup_logging()
|
|
|
|
folder_symbol = "\U0001f4c2"
|
|
refresh_symbol = "\U0001f504"
|
|
save_style_symbol = "\U0001f4be"
|
|
document_symbol = "\U0001F4C4"
|
|
|
|
PYTHON = sys.executable
|
|
|
|
|
|
def check_model(model):
|
|
if not model:
|
|
return True
|
|
if not os.path.isfile(model):
|
|
log.info(f"The provided {model} is not a file")
|
|
return False
|
|
return True
|
|
|
|
|
|
def verify_conditions(sd_model, lora_models):
|
|
lora_models_count = sum(1 for model in lora_models if model)
|
|
if sd_model and lora_models_count >= 1:
|
|
return True
|
|
elif not sd_model and lora_models_count >= 2:
|
|
return True
|
|
return False
|
|
|
|
|
|
class GradioMergeLoRaTab:
|
|
def __init__(self, headless=False):
|
|
self.headless = headless
|
|
self.build_tab()
|
|
|
|
def save_inputs_to_json(self, file_path, inputs):
|
|
with open(file_path, "w", encoding="utf-8") as file:
|
|
json.dump(inputs, file)
|
|
log.info(f"Saved inputs to {file_path}")
|
|
|
|
def load_inputs_from_json(self, file_path):
|
|
with open(file_path, "r", encoding="utf-8") as file:
|
|
inputs = json.load(file)
|
|
log.info(f"Loaded inputs from {file_path}")
|
|
return inputs
|
|
|
|
def build_tab(self):
|
|
current_sd_model_dir = os.path.join(scriptdir, "outputs")
|
|
current_save_dir = os.path.join(scriptdir, "outputs")
|
|
current_a_model_dir = current_sd_model_dir
|
|
current_b_model_dir = current_sd_model_dir
|
|
current_c_model_dir = current_sd_model_dir
|
|
current_d_model_dir = current_sd_model_dir
|
|
|
|
def list_sd_models(path):
|
|
nonlocal current_sd_model_dir
|
|
current_sd_model_dir = path
|
|
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
|
|
|
|
def list_a_models(path):
|
|
nonlocal current_a_model_dir
|
|
current_a_model_dir = path
|
|
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
|
|
|
|
def list_b_models(path):
|
|
nonlocal current_b_model_dir
|
|
current_b_model_dir = path
|
|
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
|
|
|
|
def list_c_models(path):
|
|
nonlocal current_c_model_dir
|
|
current_c_model_dir = path
|
|
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
|
|
|
|
def list_d_models(path):
|
|
nonlocal current_d_model_dir
|
|
current_d_model_dir = path
|
|
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
|
|
|
|
def list_save_to(path):
|
|
nonlocal current_save_dir
|
|
current_save_dir = path
|
|
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
|
|
|
|
with gr.Tab("Merge LoRA"):
|
|
gr.Markdown(
|
|
"This utility can merge up to 4 LoRA together or alternatively merge up to 4 LoRA into a SD checkpoint."
|
|
)
|
|
|
|
lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False)
|
|
lora_ext_name = gr.Textbox(value="LoRA model types", visible=False)
|
|
ckpt_ext = gr.Textbox(value="*.safetensors *.ckpt", visible=False)
|
|
ckpt_ext_name = gr.Textbox(value="SD model types", visible=False)
|
|
|
|
with gr.Group(), gr.Row():
|
|
sd_model = gr.Dropdown(
|
|
label="SD Model (Optional. Stable Diffusion model path, if you want to merge it with LoRA files)",
|
|
interactive=True,
|
|
choices=[""] + list_sd_models(current_sd_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
sd_model,
|
|
lambda: None,
|
|
lambda: {"choices": list_sd_models(current_sd_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
sd_model_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not self.headless),
|
|
)
|
|
sd_model_file.click(
|
|
get_file_path,
|
|
inputs=[sd_model, ckpt_ext, ckpt_ext_name],
|
|
outputs=sd_model,
|
|
show_progress=False,
|
|
)
|
|
sdxl_model = gr.Checkbox(label="SDXL model", value=False)
|
|
|
|
sd_model.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_sd_models(path)),
|
|
inputs=sd_model,
|
|
outputs=sd_model,
|
|
show_progress=False,
|
|
)
|
|
|
|
with gr.Group(), gr.Row():
|
|
lora_a_model = gr.Dropdown(
|
|
label='LoRA model "A" (path to the LoRA A model)',
|
|
interactive=True,
|
|
choices=[""] + list_a_models(current_a_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
lora_a_model,
|
|
lambda: None,
|
|
lambda: {"choices": list_a_models(current_a_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_lora_a_model_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not self.headless),
|
|
)
|
|
button_lora_a_model_file.click(
|
|
get_file_path,
|
|
inputs=[lora_a_model, lora_ext, lora_ext_name],
|
|
outputs=lora_a_model,
|
|
show_progress=False,
|
|
)
|
|
|
|
lora_b_model = gr.Dropdown(
|
|
label='LoRA model "B" (path to the LoRA B model)',
|
|
interactive=True,
|
|
choices=[""] + list_b_models(current_b_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
lora_b_model,
|
|
lambda: None,
|
|
lambda: {"choices": list_b_models(current_b_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_lora_b_model_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not self.headless),
|
|
)
|
|
button_lora_b_model_file.click(
|
|
get_file_path,
|
|
inputs=[lora_b_model, lora_ext, lora_ext_name],
|
|
outputs=lora_b_model,
|
|
show_progress=False,
|
|
)
|
|
|
|
lora_a_model.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_a_models(path)),
|
|
inputs=lora_a_model,
|
|
outputs=lora_a_model,
|
|
show_progress=False,
|
|
)
|
|
lora_b_model.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_b_models(path)),
|
|
inputs=lora_b_model,
|
|
outputs=lora_b_model,
|
|
show_progress=False,
|
|
)
|
|
|
|
with gr.Row():
|
|
ratio_a = gr.Slider(
|
|
label="Model A merge ratio (eg: 0.5 mean 50%)",
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
value=0.0,
|
|
interactive=True,
|
|
)
|
|
|
|
ratio_b = gr.Slider(
|
|
label="Model B merge ratio (eg: 0.5 mean 50%)",
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
value=0.0,
|
|
interactive=True,
|
|
)
|
|
|
|
with gr.Group(), gr.Row():
|
|
lora_c_model = gr.Dropdown(
|
|
label='LoRA model "C" (path to the LoRA C model)',
|
|
interactive=True,
|
|
choices=[""] + list_c_models(current_c_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
lora_c_model,
|
|
lambda: None,
|
|
lambda: {"choices": list_c_models(current_c_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_lora_c_model_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not self.headless),
|
|
)
|
|
button_lora_c_model_file.click(
|
|
get_file_path,
|
|
inputs=[lora_c_model, lora_ext, lora_ext_name],
|
|
outputs=lora_c_model,
|
|
show_progress=False,
|
|
)
|
|
|
|
lora_d_model = gr.Dropdown(
|
|
label='LoRA model "D" (path to the LoRA D model)',
|
|
interactive=True,
|
|
choices=[""] + list_d_models(current_d_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
lora_d_model,
|
|
lambda: None,
|
|
lambda: {"choices": list_d_models(current_d_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_lora_d_model_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not self.headless),
|
|
)
|
|
button_lora_d_model_file.click(
|
|
get_file_path,
|
|
inputs=[lora_d_model, lora_ext, lora_ext_name],
|
|
outputs=lora_d_model,
|
|
show_progress=False,
|
|
)
|
|
lora_c_model.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_c_models(path)),
|
|
inputs=lora_c_model,
|
|
outputs=lora_c_model,
|
|
show_progress=False,
|
|
)
|
|
lora_d_model.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_d_models(path)),
|
|
inputs=lora_d_model,
|
|
outputs=lora_d_model,
|
|
show_progress=False,
|
|
)
|
|
|
|
with gr.Row():
|
|
ratio_c = gr.Slider(
|
|
label="Model C merge ratio (eg: 0.5 mean 50%)",
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
value=0.0,
|
|
interactive=True,
|
|
)
|
|
|
|
ratio_d = gr.Slider(
|
|
label="Model D merge ratio (eg: 0.5 mean 50%)",
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
value=0.0,
|
|
interactive=True,
|
|
)
|
|
|
|
with gr.Group(), gr.Row():
|
|
save_to = gr.Dropdown(
|
|
label="Save to (path for the file to save...)",
|
|
interactive=True,
|
|
choices=[""] + list_save_to(current_d_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
save_to,
|
|
lambda: None,
|
|
lambda: {"choices": list_save_to(current_save_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_save_to = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not self.headless),
|
|
)
|
|
button_save_to.click(
|
|
get_saveasfilename_path,
|
|
inputs=[save_to, lora_ext, lora_ext_name],
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
precision = gr.Radio(
|
|
label="Merge precision",
|
|
choices=["fp16", "bf16", "float"],
|
|
value="float",
|
|
interactive=True,
|
|
)
|
|
save_precision = gr.Radio(
|
|
label="Save precision",
|
|
choices=["fp16", "bf16", "float"],
|
|
value="fp16",
|
|
interactive=True,
|
|
)
|
|
|
|
save_to.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
|
|
inputs=save_to,
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
|
|
merge_button = gr.Button("Merge model")
|
|
|
|
merge_button.click(
|
|
self.merge_lora,
|
|
inputs=[
|
|
sd_model,
|
|
sdxl_model,
|
|
lora_a_model,
|
|
lora_b_model,
|
|
lora_c_model,
|
|
lora_d_model,
|
|
ratio_a,
|
|
ratio_b,
|
|
ratio_c,
|
|
ratio_d,
|
|
save_to,
|
|
precision,
|
|
save_precision,
|
|
],
|
|
show_progress=False,
|
|
)
|
|
|
|
def merge_lora(
|
|
self,
|
|
sd_model,
|
|
sdxl_model,
|
|
lora_a_model,
|
|
lora_b_model,
|
|
lora_c_model,
|
|
lora_d_model,
|
|
ratio_a,
|
|
ratio_b,
|
|
ratio_c,
|
|
ratio_d,
|
|
save_to,
|
|
precision,
|
|
save_precision,
|
|
):
|
|
|
|
log.info("Merge model...")
|
|
models = [
|
|
sd_model,
|
|
lora_a_model,
|
|
lora_b_model,
|
|
lora_c_model,
|
|
lora_d_model,
|
|
]
|
|
lora_models = models[1:]
|
|
ratios = [ratio_a, ratio_b, ratio_c, ratio_d]
|
|
|
|
if not verify_conditions(sd_model, lora_models):
|
|
log.info(
|
|
"Warning: Either provide at least one LoRa model along with the sd_model or at least two LoRa models if no sd_model is provided."
|
|
)
|
|
return
|
|
|
|
for model in models:
|
|
if not check_model(model):
|
|
return
|
|
|
|
if not sdxl_model:
|
|
run_cmd = [rf"{PYTHON}", rf"{scriptdir}/sd-scripts/networks/merge_lora.py"]
|
|
else:
|
|
run_cmd = [
|
|
rf"{PYTHON}",
|
|
rf"{scriptdir}/sd-scripts/networks/sdxl_merge_lora.py",
|
|
]
|
|
|
|
if sd_model:
|
|
run_cmd.append("--sd_model")
|
|
run_cmd.append(rf"{sd_model}")
|
|
|
|
run_cmd.append("--save_precision")
|
|
run_cmd.append(save_precision)
|
|
run_cmd.append("--precision")
|
|
run_cmd.append(precision)
|
|
run_cmd.append("--save_to")
|
|
run_cmd.append(rf"{save_to}")
|
|
|
|
|
|
valid_models = [model for model in lora_models if model]
|
|
valid_ratios = [ratios[i] for i, model in enumerate(lora_models) if model]
|
|
|
|
if valid_models:
|
|
run_cmd.append("--models")
|
|
run_cmd.extend(valid_models)
|
|
run_cmd.append("--ratios")
|
|
run_cmd.extend(
|
|
map(str, valid_ratios)
|
|
)
|
|
|
|
env = setup_environment()
|
|
|
|
|
|
command_to_run = " ".join(run_cmd)
|
|
log.info(f"Executing command: {command_to_run}")
|
|
|
|
|
|
subprocess.run(run_cmd, env=env)
|
|
|
|
log.info("Done merging...")
|
|
|