Spaces:
Sleeping
Sleeping
# Refer from https://github.com/NVIDIA/BigVGAN | |
import math | |
import torch | |
import torch.nn as nn | |
from torch import nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from .alias_free_torch import DownSample1d, UpSample1d | |
class SnakeBeta(nn.Module): | |
""" | |
A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
References: | |
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snakebeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
""" | |
def __init__(self, in_features, alpha=1.0, clamp=(1e-2, 50)): | |
""" | |
Initialization. | |
INPUT: | |
- in_features: shape of the input | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
beta is initialized to 1 by default, higher values = higher-magnitude. | |
alpha will be trained along with the rest of your model. | |
""" | |
super().__init__() | |
self.in_features = in_features | |
self.log_alpha = nn.Parameter(torch.zeros(in_features) + math.log(alpha)) | |
self.log_beta = nn.Parameter(torch.zeros(in_features) + math.log(alpha)) | |
self.clamp = clamp | |
def forward(self, x): | |
""" | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
SnakeBeta ∶= x + 1/b * sin^2 (xa) | |
""" | |
alpha = self.log_alpha.exp().clamp(*self.clamp) | |
alpha = alpha[None, :, None] | |
beta = self.log_beta.exp().clamp(*self.clamp) | |
beta = beta[None, :, None] | |
x = x + (1.0 / beta) * (x * alpha).sin().pow(2) | |
return x | |
class UpActDown(nn.Module): | |
def __init__( | |
self, | |
act, | |
up_ratio: int = 2, | |
down_ratio: int = 2, | |
up_kernel_size: int = 12, | |
down_kernel_size: int = 12, | |
): | |
super().__init__() | |
self.up_ratio = up_ratio | |
self.down_ratio = down_ratio | |
self.act = act | |
self.upsample = UpSample1d(up_ratio, up_kernel_size) | |
self.downsample = DownSample1d(down_ratio, down_kernel_size) | |
def forward(self, x): | |
# x: [B,C,T] | |
x = self.upsample(x) | |
x = self.act(x) | |
x = self.downsample(x) | |
return x | |
class AMPBlock(nn.Sequential): | |
def __init__(self, channels, *, kernel_size=3, dilations=(1, 3, 5)): | |
super().__init__( | |
*(self._make_layer(channels, kernel_size, d) for d in dilations) | |
) | |
def _make_layer(self, channels, kernel_size, dilation): | |
return nn.Sequential( | |
weight_norm( | |
nn.Conv1d( | |
channels, channels, kernel_size, dilation=dilation, padding="same" | |
) | |
), | |
UpActDown(act=SnakeBeta(channels)), | |
weight_norm(nn.Conv1d(channels, channels, kernel_size, padding="same")), | |
) | |
def forward(self, x): | |
return x + super().forward(x) | |