Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved.import math | |
import json | |
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from collections import defaultdict | |
from utils import get_root_logger | |
import torch.nn.functional as F | |
def rearrange_activations(activations): | |
n_channels = activations.shape[-1] | |
activations = activations.reshape(-1, n_channels) | |
return activations | |
def ps_inv(x1, x2): | |
'''Least-squares solver given feature maps from two anchors. | |
''' | |
x1 = rearrange_activations(x1) | |
x2 = rearrange_activations(x2) | |
if not x1.shape[0] == x2.shape[0]: | |
raise ValueError('Spatial size of compared neurons must match when ' \ | |
'calculating psuedo inverse matrix.') | |
# Get transformation matrix shape | |
shape = list(x1.shape) | |
shape[-1] += 1 | |
# Calculate pseudo inverse | |
x1_ones = torch.ones(shape) | |
x1_ones[:, :-1] = x1 | |
A_ones = torch.matmul(torch.linalg.pinv(x1_ones), x2.to(x1_ones.device)).T | |
# Get weights and bias | |
w = A_ones[..., :-1] | |
b = A_ones[..., -1] | |
return w, b | |
def reset_out_indices(front_depth=12, end_depth=24, out_indices=(9, 14, 19, 23)): | |
block_ids = torch.tensor(list(range(front_depth))) | |
block_ids = block_ids[None, None, :].float() | |
end_mapping_ids = torch.nn.functional.interpolate(block_ids, end_depth) | |
end_mapping_ids = end_mapping_ids.squeeze().long().tolist() | |
small_out_indices = [] | |
for i, idx in enumerate(end_mapping_ids): | |
if i in out_indices: | |
small_out_indices.append(idx) | |
return small_out_indices | |
def get_stitch_configs_general_unequal(depths): | |
depths = sorted(depths) | |
total_configs = [] | |
# anchor configurations | |
total_configs.append({'comb_id': [1], }) | |
num_stitches = depths[0] | |
for i, blk_id in enumerate(range(num_stitches)): | |
total_configs.append({ | |
'comb_id': (0, 1), | |
'stitch_cfgs': (i, (i + 1) * (depths[1] // depths[0])) | |
}) | |
return total_configs, num_stitches | |
def get_stitch_configs_bidirection(depths): | |
depths = sorted(depths) | |
total_configs = [] | |
# anchor configurations | |
total_configs.append({'comb_id': [0], }) | |
total_configs.append({'comb_id': [1], }) | |
num_stitches = depths[0] | |
# small --> large | |
sl_configs = [] | |
for i, blk_id in enumerate(range(num_stitches)): | |
sl_configs.append({ | |
'comb_id': [0, 1], | |
'stitch_cfgs': [ | |
[i, (i + 1) * (depths[1] // depths[0])] | |
], | |
'stitch_layer_ids': [i] | |
}) | |
ls_configs = [] | |
lsl_confgs = [] | |
block_ids = torch.tensor(list(range(depths[0]))) | |
block_ids = block_ids[None, None, :].float() | |
end_mapping_ids = torch.nn.functional.interpolate(block_ids, depths[1]) | |
end_mapping_ids = end_mapping_ids.squeeze().long().tolist() | |
# large --> small | |
for i in range(depths[1]): | |
if depths[1] != depths[0]: | |
if i % 2 == 1 and i < (depths[1] - 1): | |
ls_configs.append({ | |
'comb_id': [1, 0], | |
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]], | |
'stitch_layer_ids': [i // (depths[1] // depths[0])] | |
}) | |
else: | |
if i < (depths[1] - 1): | |
ls_configs.append({ | |
'comb_id': [1, 0], | |
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]], | |
'stitch_layer_ids': [i // (depths[1] // depths[0])] | |
}) | |
# large --> small --> large | |
for ls_cfg in ls_configs: | |
for sl_cfg in sl_configs: | |
if sl_cfg['stitch_layer_ids'][0] == depths[0] - 1: | |
continue | |
if sl_cfg['stitch_cfgs'][0][0] >= ls_cfg['stitch_cfgs'][0][1]: | |
lsl_confgs.append({ | |
'comb_id': [1, 0, 1], | |
'stitch_cfgs': [ls_cfg['stitch_cfgs'][0], sl_cfg['stitch_cfgs'][0]], | |
'stitch_layer_ids': ls_cfg['stitch_layer_ids'] + sl_cfg['stitch_layer_ids'] | |
}) | |
# small --> large --> small | |
sls_configs = [] | |
for sl_cfg in sl_configs: | |
for ls_cfg in ls_configs: | |
if ls_cfg['stitch_cfgs'][0][0] >= sl_cfg['stitch_cfgs'][0][1]: | |
sls_configs.append({ | |
'comb_id': [0, 1, 0], | |
'stitch_cfgs': [sl_cfg['stitch_cfgs'][0], ls_cfg['stitch_cfgs'][0]], | |
'stitch_layer_ids': sl_cfg['stitch_layer_ids'] + ls_cfg['stitch_layer_ids'] | |
}) | |
total_configs += sl_configs + ls_configs + lsl_confgs + sls_configs | |
anchor_ids = [] | |
sl_ids = [] | |
ls_ids = [] | |
lsl_ids = [] | |
sls_ids = [] | |
for i, cfg in enumerate(total_configs): | |
comb_id = cfg['comb_id'] | |
if len(comb_id) == 1: | |
anchor_ids.append(i) | |
continue | |
if len(comb_id) == 2: | |
route = [] | |
front, end = cfg['stitch_cfgs'][0] | |
route.append([0, front]) | |
route.append([end, depths[comb_id[-1]]]) | |
cfg['route'] = route | |
if comb_id == [0, 1] and front != 11: | |
sl_ids.append(i) | |
elif comb_id == [1, 0]: | |
ls_ids.append(i) | |
if len(comb_id) == 3: | |
route = [] | |
front_1, end_1 = cfg['stitch_cfgs'][0] | |
front_2, end_2 = cfg['stitch_cfgs'][1] | |
route.append([0, front_1]) | |
route.append([end_1, front_2]) | |
route.append([end_2, depths[comb_id[-1]]]) | |
cfg['route'] = route | |
if comb_id == [1, 0, 1]: | |
lsl_ids.append(i) | |
elif comb_id == [0, 1, 0]: | |
sls_ids.append(i) | |
cfg['stitch_layer_ids'].append(-1) | |
model_combos = [(0, 1), (1, 0)] | |
return total_configs, model_combos, [len(sl_configs), len(ls_configs)], anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids | |
def format_out_features(outs, with_cls_token, hw_shape): | |
B, _, C = outs[0].shape | |
for i in range(len(outs)): | |
if with_cls_token: | |
# Remove class token and reshape token for decoder head | |
outs[i] = outs[i][:, 1:].reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
else: | |
outs[i] = outs[i].reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
return outs | |
class LoRALayer(): | |
def __init__( | |
self, | |
r: int, | |
lora_alpha: int, | |
lora_dropout: float, | |
merge_weights: bool, | |
): | |
self.r = r | |
self.lora_alpha = lora_alpha | |
# Optional dropout | |
if lora_dropout > 0.: | |
self.lora_dropout = nn.Dropout(p=lora_dropout) | |
else: | |
self.lora_dropout = lambda x: x | |
# Mark the weight as unmerged | |
self.merged = False | |
self.merge_weights = merge_weights | |
class Linear(nn.Linear, LoRALayer): | |
# LoRA implemented in a dense layer | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
r: int = 0, | |
lora_alpha: int = 1, | |
lora_dropout: float = 0., | |
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) | |
merge_weights: bool = True, | |
**kwargs | |
): | |
nn.Linear.__init__(self, in_features, out_features, **kwargs) | |
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, | |
merge_weights=merge_weights) | |
self.fan_in_fan_out = fan_in_fan_out | |
# Actual trainable parameters | |
if r > 0: | |
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features))) | |
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r))) | |
self.scaling = self.lora_alpha / self.r | |
# Freezing the pre-trained weight matrix | |
self.weight.requires_grad = False | |
self.reset_parameters() | |
if fan_in_fan_out: | |
self.weight.data = self.weight.data.transpose(0, 1) | |
def reset_parameters(self): | |
nn.Linear.reset_parameters(self) | |
if hasattr(self, 'lora_A'): | |
# initialize A the same way as the default for nn.Linear and B to zero | |
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) | |
nn.init.zeros_(self.lora_B) | |
def train(self, mode: bool = True): | |
def T(w): | |
return w.transpose(0, 1) if self.fan_in_fan_out else w | |
nn.Linear.train(self, mode) | |
if mode: | |
if self.merge_weights and self.merged: | |
# Make sure that the weights are not merged | |
if self.r > 0: | |
self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling | |
self.merged = False | |
else: | |
if self.merge_weights and not self.merged: | |
# Merge the weights and mark it | |
if self.r > 0: | |
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling | |
self.merged = True | |
def forward(self, x: torch.Tensor): | |
def T(w): | |
return w.transpose(0, 1) if self.fan_in_fan_out else w | |
if self.r > 0 and not self.merged: | |
result = F.linear(x, T(self.weight), bias=self.bias) | |
if self.r > 0: | |
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling | |
return result | |
else: | |
return F.linear(x, T(self.weight), bias=self.bias) | |
class StitchingLayer(nn.Module): | |
def __init__(self, in_features=None, out_features=None, r=0): | |
super().__init__() | |
self.transform = Linear(in_features, out_features, r=r) | |
def init_stitch_weights_bias(self, weight, bias): | |
self.transform.weight.data.copy_(weight) | |
self.transform.bias.data.copy_(bias) | |
def forward(self, x): | |
out = self.transform(x) | |
return out | |
class SNNet(nn.Module): | |
def __init__(self, anchors=None): | |
super(SNNet, self).__init__() | |
self.anchors = nn.ModuleList(anchors) | |
self.depths = [len(anc.blocks) for anc in self.anchors] | |
total_configs, num_stitches = get_stitch_configs_general_unequal(self.depths) | |
self.stitch_layers = nn.ModuleList( | |
[StitchingLayer(self.anchors[0].embed_dim, self.anchors[1].embed_dim) for _ in range(num_stitches)]) | |
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)} | |
self.all_cfgs = list(self.stitch_configs.keys()) | |
self.num_configs = len(self.all_cfgs) | |
self.stitch_config_id = 0 | |
self.is_ranking = False | |
def reset_stitch_id(self, stitch_config_id): | |
self.stitch_config_id = stitch_config_id | |
def initialize_stitching_weights(self, x): | |
logger = get_root_logger() | |
front, end = 0, 1 | |
with torch.no_grad(): | |
front_features = self.anchors[front].extract_block_features(x) | |
end_features = self.anchors[end].extract_block_features(x) | |
for i, blk_id in enumerate(range(self.depths[0])): | |
front_id, end_id = i, (i + 1) * (self.depths[1] // self.depths[0]) | |
front_blk_feat = front_features[front_id] | |
end_blk_feat = end_features[end_id - 1] | |
w, b = ps_inv(front_blk_feat, end_blk_feat) | |
self.stitch_layers[i].init_stitch_weights_bias(w, b) | |
logger.info(f'Initialized Stitching Model {front} to Model {end}, Layer {i}') | |
def init_weights(self): | |
for anc in self.anchors: | |
anc.init_weights() | |
def sampling_stitch_config(self): | |
self.stitch_config_id = np.random.choice(self.all_cfgs) | |
def forward(self, x): | |
stitch_cfg_id = self.stitch_config_id | |
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id'] | |
if len(comb_id) == 1: | |
return self.anchors[comb_id[0]](x) | |
cfg = self.stitch_configs[stitch_cfg_id]['stitch_cfgs'] | |
x = self.anchors[comb_id[0]].forward_until(x, blk_id=cfg[0]) | |
x = self.stitch_layers[cfg[0]](x) | |
x = self.anchors[comb_id[1]].forward_from(x, blk_id=cfg[1]) | |
return x | |
class SNNetv2(nn.Module): | |
def __init__(self, anchors=None, include_sl=True, include_ls=True, include_lsl=True, include_sls=True, lora_r=0): | |
super(SNNetv2, self).__init__() | |
self.anchors = nn.ModuleList(anchors) | |
self.lora_r = lora_r | |
self.depths = [len(anc.blocks) for anc in self.anchors] | |
total_configs, model_combos, num_stitches, anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids = get_stitch_configs_bidirection(self.depths) | |
self.stitch_layers = nn.ModuleList() | |
self.stitching_map_id = {} | |
for i, (comb, num_sth) in enumerate(zip(model_combos, num_stitches)): | |
front, end = comb | |
temp = nn.ModuleList( | |
[StitchingLayer(self.anchors[front].embed_dim, self.anchors[end].embed_dim, r=lora_r) for _ in range(num_sth)]) | |
temp.append(nn.Identity()) | |
self.stitch_layers.append(temp) | |
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)} | |
self.stitch_init_configs = {i: cfg for i, cfg in enumerate(total_configs) if len(cfg['comb_id']) == 2} | |
self.all_cfgs = list(self.stitch_configs.keys()) | |
logger = get_root_logger() | |
logger.info(str(self.all_cfgs)) | |
self.all_cfgs = anchor_ids | |
if include_sl: | |
self.all_cfgs += sl_ids | |
if include_ls: | |
self.all_cfgs += ls_ids | |
if include_lsl: | |
self.all_cfgs += lsl_ids | |
if include_sls: | |
self.all_cfgs += sls_ids | |
self.num_configs = len(self.stitch_configs) | |
self.stitch_config_id = 0 | |
def reset_stitch_id(self, stitch_config_id): | |
self.stitch_config_id = stitch_config_id | |
def set_ranking_mode(self, ranking_mode): | |
self.is_ranking = ranking_mode | |
def initialize_stitching_weights(self, x): | |
logger = get_root_logger() | |
anchor_features = [] | |
for anchor in self.anchors: | |
with torch.no_grad(): | |
temp = anchor.extract_block_features(x) | |
anchor_features.append(temp) | |
for idx, cfg in self.stitch_init_configs.items(): | |
comb_id = cfg['comb_id'] | |
if len(comb_id) == 2: | |
front_id, end_id = cfg['stitch_cfgs'][0] | |
stitch_layer_id = cfg['stitch_layer_ids'][0] | |
front_blk_feat = anchor_features[comb_id[0]][front_id] | |
end_blk_feat = anchor_features[comb_id[1]][end_id - 1] | |
w, b = ps_inv(front_blk_feat, end_blk_feat) | |
self.stitch_layers[comb_id[0]][stitch_layer_id].init_stitch_weights_bias(w, b) | |
logger.info(f'Initialized Stitching Layer {cfg}') | |
def init_weights(self): | |
for anc in self.anchors: | |
anc.init_weights() | |
def sampling_stitch_config(self): | |
flops_id = np.random.choice(len(self.flops_grouped_cfgs), p=self.flops_sampling_probs) | |
stitch_config_id = np.random.choice(self.flops_grouped_cfgs[flops_id]) | |
return stitch_config_id | |
def forward(self, x): | |
if self.training: | |
stitch_cfg_id = self.sampling_stitch_config() | |
else: | |
stitch_cfg_id = self.stitch_config_id | |
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id'] | |
# forward by a single anchor | |
if len(comb_id) == 1: | |
return self.anchors[comb_id[0]](x) | |
# forward among anchors | |
route = self.stitch_configs[stitch_cfg_id]['route'] | |
stitch_layer_ids = self.stitch_configs[stitch_cfg_id]['stitch_layer_ids'] | |
# patch embeding | |
x = self.anchors[comb_id[0]].forward_patch_embed(x) | |
for i, (model_id, cfg) in enumerate(zip(comb_id, route)): | |
x = self.anchors[model_id].selective_forward(x, cfg[0], cfg[1]) | |
x = self.stitch_layers[model_id][stitch_layer_ids[i]](x) | |
x = self.anchors[comb_id[-1]].forward_norm_head(x) | |
return x | |