Spaces:
Runtime error
Runtime error
File size: 14,992 Bytes
8655a4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# Adapted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import copy
import os
from dataclasses import dataclass, field
import random
import json
import logging
import pathlib
from typing import Dict, Optional, Sequence
import torch
import torch.distributed as dist
import transformers
from torch.utils.data import Dataset
from transformers import Trainer, AddedToken
from fastchat.model.model_adapter import get_conversation_template
default_conversation = get_conversation_template("t5")
# TODO: import and use code from ../data/dataset.py
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
lazy_preprocess: bool = False
num_data: int = -1
preprocessed_path: str = field(
default=None, metadata={"help": "Path to the preprocessed training data."}
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=2048,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
other_tokens,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
for new_token in other_tokens:
num_new_tokens += tokenizer.add_tokens(AddedToken(new_token, normalized=False))
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(
strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer
) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def _form_qa(
q_list,
a_list,
tokenized_conversation,
tokenized_lens,
speakers,
header_len,
max_length,
eos_id,
):
cur_idx = header_len
conv_len = len(tokenized_conversation)
for tokenized_len, speaker in zip(tokenized_lens, speakers):
if cur_idx >= conv_len:
break
if speaker == "gpt":
# truncate answer if it is too long
content_a = None
if tokenized_len > max_length:
content_a = tokenized_conversation[cur_idx : cur_idx + max_length]
else:
content_a = tokenized_conversation[cur_idx : cur_idx + tokenized_len]
content_a.append(eos_id)
a_list.append(content_a)
content_q = None
if cur_idx >= max_length:
content_q = tokenized_conversation[cur_idx - max_length : cur_idx]
else:
content_q = tokenized_conversation[:cur_idx]
content_q.append(eos_id)
q_list.append(content_q)
# asser the last token is actually a EOS for an answer
assert a_list[-1][-1] == eos_id, "Last Token is not EOS!"
cur_idx += tokenized_len
def _add_speaker_and_signal(header, source, get_conversation=True):
"""Add speaker and start/end signal on each round."""
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
conversation = header
unknown_role = "unknown" # use default unknown role
roles = {
"human": default_conversation.roles[0], # human role
"gpt": default_conversation.roles[1], # gpt role
}
for i in range(len(source)):
sentence = source[i]
sentence_from = sentence["from"].lower()
# TODO(Dacheng): verify this is a good way to split sentences
if sentence_from == "human":
# if this is not the last sentence
if i != len(source) - 1:
next_sentence = source[i + 1]
sentence["value"] = (
BEGIN_SIGNAL
+ roles.get(sentence_from, unknown_role)
+ ": "
+ sentence["value"]
+ END_SIGNAL
+ BEGIN_SIGNAL
+ roles.get(next_sentence["from"].lower(), unknown_role)
+ ": "
)
else:
# if human is the last speaker, it does not contribute to an answer
pass
else:
sentence["value"] = sentence["value"] + END_SIGNAL
if get_conversation:
conversation += sentence["value"]
return conversation
def preprocess(
sources: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""
Given a list of sources, each is a conversation list. This transform:
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
2. Concatenate conversations together;
3. Tokenize the concatenated conversation;
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
"""
# add end signal and concatenate together
conversations = []
header = f"{default_conversation.system_message}\n\n"
for source in sources:
conversation = _add_speaker_and_signal(header, source, tokenizer)
conversations.append(conversation)
# TODO(Dacheng): This is related to whether the dataset has been truncated..
# Assume we get long conversations, don't pad, don't return tensor
tokenized_conversations = tokenizer(conversations, max_length=None)["input_ids"]
q_list = []
a_list = []
# count for EOS length
header_len = _tokenize_fn([header], tokenizer)["input_ids_lens"][0] - 1
from tqdm import tqdm
for tokenized_conversation, source in tqdm(zip(tokenized_conversations, sources)):
tokenized_sentence = _tokenize_fn([s["value"] for s in source], tokenizer)
tokenized_lens = tokenized_sentence["input_ids_lens"]
tokenized_lens = [l - 1 for l in tokenized_lens]
speakers = [sentence["from"] for sentence in source]
ids = tokenized_sentence["input_ids"]
_form_qa(
q_list,
a_list,
tokenized_conversation,
tokenized_lens,
speakers,
header_len,
tokenizer.model_max_length,
tokenizer.eos_token_id,
)
return dict(input_ids=q_list, labels=a_list)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self,
data_path: str,
tokenizer: transformers.PreTrainedTokenizer,
preprocessed_path,
num_data,
):
super(SupervisedDataset, self).__init__()
# save to file
# Make sure only the first process is processing the dataset
if dist.get_rank() != 0:
dist.barrier()
self.preprocessed_path = preprocessed_path
if os.path.exists(self.preprocessed_path):
logging.warning("loading from preprocessed data")
with open(self.preprocessed_path, "r") as f:
data_dict = json.load(f)
if dist.get_rank() == 0:
dist.barrier()
else:
if not os.path.exists("preprocessed_data"):
os.mkdir("preprocessed_data")
assert dist.get_rank() == 0, "Only the first process should process"
logging.warning("Loading data...")
list_data_dict = json.load(open(data_path, "r"))
logging.warning("Formatting inputs...")
sources = []
sources = [example["conversations"] for example in list_data_dict]
data_dict = preprocess(sources, tokenizer)
json_data_dict = json.dumps(data_dict)
# Remember to close file to avoid concurrent r/w
with open(self.preprocessed_path, "w") as f:
f.write(json_data_dict)
# Release barrier
dist.barrier()
if num_data != -1:
data_dict["input_ids"] = data_dict["input_ids"][:num_data]
data_dict["labels"] = data_dict["labels"][:num_data]
# Shuffle data to see more conversations, if only train on partial data
temp = list(zip(data_dict["input_ids"], data_dict["labels"]))
random.shuffle(temp)
res1, res2 = zip(*temp)
data_dict["input_ids"], data_dict["labels"] = list(res1), list(res2)
# Dacheng: Get rid of short QA pair
self.input_ids = copy.deepcopy(data_dict["input_ids"])
self.labels = copy.deepcopy(data_dict["labels"])
length_arr = defaultdict(int)
for idx, (input, label) in enumerate(
zip(data_dict["input_ids"], data_dict["labels"])
):
length_arr[str(len(label) // 100)] += 1
if len(input) <= 5:
del_idx = self.input_ids.index(input)
self.input_ids.pop(del_idx)
self.labels.pop(del_idx)
if len(label) <= 5:
del_idx = self.labels.index(label)
self.input_ids.pop(del_idx)
self.labels.pop(del_idx)
for input, label in zip(self.input_ids, self.labels):
assert len(input) >= 5
assert len(label) >= 5
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple(
[
torch.as_tensor(instance[key], dtype=torch.int64)
for instance in instances
]
for key in ("input_ids", "labels")
)
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=IGNORE_INDEX
)
ret = dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
torch.set_printoptions(profile="full")
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = SupervisedDataset
train_dataset = dataset_cls(
tokenizer=tokenizer,
data_path=data_args.data_path,
preprocessed_path=data_args.preprocessed_path,
num_data=data_args.num_data,
)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(
train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator
)
def train():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
)
# Dacheng: Note we can only use T5Tokenizer, otherwise it will prepend
# a space before special tokens.
tokenizer = transformers.T5Tokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
other_tokens=["<", "{", "\n", "}", "`", " ", "\\", "^", "\t"],
tokenizer=tokenizer,
model=model,
)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()
|