zjasper666's picture
Upload folder using huggingface_hub
8655a4b verified
raw
history blame
15.5 kB
"""
Common utilities.
"""
from asyncio import AbstractEventLoop
from io import BytesIO
import base64
import json
import logging
import logging.handlers
import os
import platform
import sys
import time
from typing import AsyncGenerator, Generator
import warnings
import requests
from fastchat.constants import LOGDIR
handler = None
visited_loggers = set()
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
if sys.version_info[1] >= 9:
# This is for windows
logging.basicConfig(level=logging.INFO, encoding="utf-8")
else:
if platform.system() == "Windows":
warnings.warn(
"If you are running on Windows, "
"we recommend you use Python >= 3.9 for UTF-8 encoding."
)
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Avoid httpx flooding POST logs
logging.getLogger("httpx").setLevel(logging.WARNING)
# if LOGDIR is empty, then don't try output log to local file
if LOGDIR != "":
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when="D", utc=True, encoding="utf-8"
)
handler.setFormatter(formatter)
for l in [stdout_logger, stderr_logger, logger]:
if l in visited_loggers:
continue
visited_loggers.add(l)
l.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ""
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ""
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == "\n":
encoded_message = line.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != "":
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
self.linebuf = ""
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def get_gpu_memory(max_gpus=None):
"""Get available memory for each GPU."""
import torch
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024**3)
allocated_memory = torch.cuda.memory_allocated() / (1024**3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def oai_moderation(text, custom_thresholds=None):
"""
Check whether the text violates OpenAI moderation API.
"""
import openai
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
# default to true to be conservative
flagged = True
MAX_RETRY = 3
for _ in range(MAX_RETRY):
try:
res = client.moderations.create(input=text)
flagged = res.results[0].flagged
if custom_thresholds is not None:
for category, threshold in custom_thresholds.items():
if getattr(res.results[0].category_scores, category) > threshold:
flagged = True
break
except (openai.OpenAIError, KeyError, IndexError) as e:
print(f"MODERATION ERROR: {e}\nInput: {text}")
return flagged
def moderation_filter(text, model_list, do_moderation=False):
# Apply moderation for below models
MODEL_KEYWORDS = [
"claude",
"gpt",
"bard",
"mistral-large",
"command-r",
"dbrx",
"gemini",
"reka",
]
custom_thresholds = {"sexual": 0.3}
# set a stricter threshold for claude
for model in model_list:
if "claude" in model:
custom_thresholds = {"sexual": 0.2}
for keyword in MODEL_KEYWORDS:
for model in model_list:
if keyword in model:
do_moderation = True
break
if do_moderation:
return oai_moderation(text, custom_thresholds)
return False
def clean_flant5_ckpt(ckpt_path):
"""
Flan-t5 trained with HF+FSDP saves corrupted weights for shared embeddings,
Use this function to make sure it can be correctly loaded.
"""
import torch
index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json")
index_json = json.load(open(index_file, "r"))
weightmap = index_json["weight_map"]
share_weight_file = weightmap["shared.weight"]
share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[
"shared.weight"
]
for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]:
weight_file = weightmap[weight_name]
weight = torch.load(os.path.join(ckpt_path, weight_file))
weight[weight_name] = share_weight
torch.save(weight, os.path.join(ckpt_path, weight_file))
def pretty_print_semaphore(semaphore):
"""Print a semaphore in better format."""
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
"""A javascript function to get url parameters for the gradio web server."""
get_window_url_params_js = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log("url_params", url_params);
return url_params;
}
"""
get_window_url_params_with_tos_js = """
function() {
const params = new URLSearchParams(window.location.search);
const url_params = Object.fromEntries(params);
console.log("url_params", url_params);
const urlContainsLeaderboard = Object.keys(url_params).some(key => key.toLowerCase().includes("leaderboard"));
const msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license.";
if (!urlContainsLeaderboard) {
if (window.alerted_before) return;
alert(msg);
window.alerted_before = true;
}
return url_params;
}
"""
alert_js = """
() => {
if (window.alerted_before) return;
const msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license.";
alert(msg);
window.alerted_before = true;
}
"""
def iter_over_async(
async_gen: AsyncGenerator, event_loop: AbstractEventLoop
) -> Generator:
"""
Convert async generator to sync generator
:param async_gen: the AsyncGenerator to convert
:param event_loop: the event loop to run on
:returns: Sync generator
"""
ait = async_gen.__aiter__()
async def get_next():
try:
obj = await ait.__anext__()
return False, obj
except StopAsyncIteration:
return True, None
while True:
done, obj = event_loop.run_until_complete(get_next())
if done:
break
yield obj
def detect_language(text: str) -> str:
"""Detect the langauge of a string."""
import polyglot # pip3 install polyglot pyicu pycld2
from polyglot.detect import Detector
from polyglot.detect.base import logger as polyglot_logger
import pycld2
polyglot_logger.setLevel("ERROR")
try:
lang_code = Detector(text).language.name
except (pycld2.error, polyglot.detect.base.UnknownLanguage):
lang_code = "unknown"
return lang_code
def parse_gradio_auth_creds(filename: str):
"""Parse a username:password file for gradio authorization."""
gradio_auth_creds = []
with open(filename, "r", encoding="utf8") as file:
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(",") if x.strip()]
if gradio_auth_creds:
auth = [tuple(cred.split(":")) for cred in gradio_auth_creds]
else:
auth = None
return auth
def is_partial_stop(output: str, stop_str: str):
"""Check whether the output contains a partial stop str."""
for i in range(0, min(len(output), len(stop_str))):
if stop_str.startswith(output[-i:]):
return True
return False
def run_cmd(cmd: str):
"""Run a bash command."""
print(cmd)
return os.system(cmd)
def is_sentence_complete(output: str):
"""Check whether the output is a complete sentence."""
end_symbols = (".", "?", "!", "...", "。", "?", "!", "…", '"', "'", "”")
return output.endswith(end_symbols)
# Models don't use the same configuration key for determining the maximum
# sequence length. Store them here so we can sanely check them.
# NOTE: The ordering here is important. Some models have two of these and we
# have a preference for which value gets used.
SEQUENCE_LENGTH_KEYS = [
"max_position_embeddings",
"max_sequence_length",
"seq_length",
"max_seq_len",
"model_max_length",
]
def get_context_length(config):
"""Get the context length of a model from a huggingface model config."""
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling:
rope_scaling_factor = config.rope_scaling["factor"]
else:
rope_scaling_factor = 1
for key in SEQUENCE_LENGTH_KEYS:
val = getattr(config, key, None)
if val is not None:
return int(rope_scaling_factor * val)
return 2048
def str_to_torch_dtype(dtype: str):
import torch
if dtype is None:
return None
elif dtype == "float32":
return torch.float32
elif dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
else:
raise ValueError(f"Unrecognized dtype: {dtype}")
def load_image(image_file):
from PIL import Image
import requests
image = None
if image_file.startswith("http://") or image_file.startswith("https://"):
timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
response = requests.get(image_file, timeout=timeout)
image = Image.open(BytesIO(response.content))
elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
image = Image.open(image_file)
elif image_file.startswith("data:"):
image_file = image_file.split(",")[1]
image = Image.open(BytesIO(base64.b64decode(image_file)))
else:
image = Image.open(BytesIO(base64.b64decode(image_file)))
return image
def upload_image_file_to_gcs(image, filename):
from google.cloud import storage
import io
storage_client = storage.Client()
# upload file to GCS
bucket = storage_client.get_bucket("arena_service_data")
blob = bucket.blob(f"{filename}")
if not blob.exists():
buffer = io.BytesIO()
image.save(buffer, format="PNG")
buffer.seek(0)
blob.upload_from_file(buffer, content_type="image/png")
return blob.public_url
def get_image_file_from_gcs(filename):
from google.cloud import storage
storage_client = storage.Client()
bucket = storage_client.get_bucket("arena_service_data")
blob = bucket.blob(f"{filename}")
contents = blob.download_as_bytes()
return contents
def image_moderation_request(image_bytes, endpoint, api_key):
headers = {"Content-Type": "image/jpeg", "Ocp-Apim-Subscription-Key": api_key}
MAX_RETRIES = 3
for _ in range(MAX_RETRIES):
response = requests.post(endpoint, headers=headers, data=image_bytes).json()
try:
if response["Status"]["Code"] == 3000:
break
except:
time.sleep(0.5)
return response
def image_moderation_provider(image, api_type):
if api_type == "nsfw":
endpoint = os.environ["AZURE_IMG_MODERATION_ENDPOINT"]
api_key = os.environ["AZURE_IMG_MODERATION_API_KEY"]
response = image_moderation_request(image, endpoint, api_key)
print(response)
return response["IsImageAdultClassified"]
elif api_type == "csam":
endpoint = (
"https://api.microsoftmoderator.com/photodna/v1.0/Match?enhance=false"
)
api_key = os.environ["PHOTODNA_API_KEY"]
response = image_moderation_request(image, endpoint, api_key)
return response["IsMatch"]
def image_moderation_filter(image):
print(f"moderating image")
image_bytes = base64.b64decode(image.base64_str)
nsfw_flagged = image_moderation_provider(image_bytes, "nsfw")
csam_flagged = False
if nsfw_flagged:
csam_flagged = image_moderation_provider(image_bytes, "csam")
return nsfw_flagged, csam_flagged