|
from typing import List, Dict, Any, Tuple |
|
from collections import namedtuple |
|
import copy |
|
import torch |
|
|
|
from ding.torch_utils import Adam, to_device, ContrastiveLoss |
|
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
|
|
from .base_policy import Policy |
|
from .common_utils import default_preprocess_learn |
|
|
|
|
|
@POLICY_REGISTRY.register('dqn') |
|
class DQNPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of DQN algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD. |
|
|
|
Config: |
|
== ===================== ======== ============== ======================================= ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ===================== ======== ============== ======================================= ======================= |
|
1 ``type`` str dqn | RL policy register name, refer to | This arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4 ``priority`` bool False | Whether use priority(PER) | Priority sample, |
|
| update priority |
|
5 | ``priority_IS`` bool False | Whether use Importance Sampling |
|
| ``_weight`` | Weight to correct biased update. If |
|
| True, priority must be True. |
|
6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse |
|
| ``factor`` [0.95, 0.999] | gamma | reward env |
|
7 ``nstep`` int 1, | N-step reward discount sum for target |
|
[3, 5] | q_value estimation |
|
8 | ``model.dueling`` bool True | dueling head architecture |
|
9 | ``model.encoder`` list [32, 64, | Sequence of ``hidden_size`` of | default kernel_size |
|
| ``_hidden`` (int) 64, 128] | subsequent conv layers and the | is [8, 4, 3] |
|
| ``_size_list`` | final dense layer. | default stride is |
|
| [4, 2 ,1] |
|
10 | ``model.dropout`` float None | Dropout rate for dropout layers. | [0,1] |
|
| If set to ``None`` |
|
| means no dropout |
|
11 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary |
|
| ``per_collect`` | after collector's one collection. | from envs. Bigger val |
|
| Only valid in serial training | means more off-policy |
|
12 | ``learn.batch_`` int 64 | The number of samples of an iteration |
|
| ``size`` |
|
13 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. |
|
| ``_rate`` |
|
14 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update |
|
| ``update_freq`` |
|
15 | ``learn.target_`` float 0.005 | Frequence of target network update. | Soft(assign) update |
|
| ``theta`` | Only one of [target_update_freq, |
|
| | target_theta] should be set |
|
16 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some |
|
| ``done`` | calculation. | fake termination env |
|
17 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from |
|
| call of collector. | different envs |
|
18 ``collect.n_episode`` int 8 | The number of training episodes of a | only one of [n_sample |
|
| call of collector | ,n_episode] should |
|
| | be set |
|
19 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 |
|
| ``_len`` |
|
20 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', |
|
| 'linear']. |
|
21 | ``other.eps.`` float 0.95 | start value of exploration rate | [0,1] |
|
| ``start`` |
|
22 | ``other.eps.`` float 0.1 | end value of exploration rate | [0,1] |
|
| ``end`` |
|
23 | ``other.eps.`` int 10000 | decay length of exploration | greater than 0. set |
|
| ``decay`` | decay=10000 means |
|
| the exploration rate |
|
| decay from start |
|
| value to end value |
|
| during decay length. |
|
== ===================== ======== ============== ======================================= ======================= |
|
""" |
|
|
|
config = dict( |
|
|
|
type='dqn', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
discount_factor=0.97, |
|
|
|
nstep=1, |
|
model=dict( |
|
|
|
encoder_hidden_size_list=[128, 128, 64], |
|
), |
|
|
|
learn=dict( |
|
|
|
|
|
|
|
update_per_collect=3, |
|
|
|
batch_size=64, |
|
|
|
learning_rate=0.001, |
|
|
|
|
|
target_update_freq=100, |
|
|
|
|
|
|
|
target_theta=0.005, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ignore_done=False, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
n_sample=8, |
|
|
|
unroll_len=1, |
|
), |
|
eval=dict(), |
|
|
|
other=dict( |
|
|
|
eps=dict( |
|
|
|
type='exp', |
|
|
|
start=0.95, |
|
|
|
end=0.1, |
|
|
|
decay=10000, |
|
), |
|
replay_buffer=dict( |
|
|
|
replay_buffer_size=10000, |
|
), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
|
|
.. note:: |
|
The user can define and use customized network model but must obey the same inferface definition indicated \ |
|
by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \ |
|
``ding.model.template.q_learning``. |
|
""" |
|
return 'dqn', ['ding.model.template.q_learning'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For DQN, it mainly contains \ |
|
optimizer, algorithm-specific arguments such as nstep and gamma, main and target model. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
|
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) |
|
|
|
self._gamma = self._cfg.discount_factor |
|
self._nstep = self._cfg.nstep |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
if 'target_update_freq' in self._cfg.learn: |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='assign', |
|
update_kwargs={'freq': self._cfg.learn.target_update_freq} |
|
) |
|
elif 'target_theta' in self._cfg.learn: |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_theta} |
|
) |
|
else: |
|
raise RuntimeError("DQN needs target network, please either indicate target_update_freq or target_theta") |
|
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, q value, priority. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For DQN, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ |
|
and ``value_gamma``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``. |
|
""" |
|
|
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=True |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
q_value = self._learn_model.forward(data['obs'])['logit'] |
|
|
|
with torch.no_grad(): |
|
target_q_value = self._target_model.forward(data['next_obs'])['logit'] |
|
|
|
target_q_action = self._learn_model.forward(data['next_obs'])['action'] |
|
|
|
data_n = q_nstep_td_data( |
|
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] |
|
) |
|
value_gamma = data.get('value_gamma') |
|
loss, td_error_per_sample = q_nstep_td_error(data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma) |
|
|
|
|
|
self._optimizer.zero_grad() |
|
loss.backward() |
|
if self._cfg.multi_gpu: |
|
self.sync_gradients(self._learn_model) |
|
self._optimizer.step() |
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': loss.item(), |
|
'q_value': q_value.mean().item(), |
|
'target_q_value': target_q_value.mean().item(), |
|
'priority': td_error_per_sample.abs().tolist(), |
|
|
|
|
|
} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
return ['cur_lr', 'total_loss', 'q_value', 'target_q_value'] |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model, target_model and optimizer. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. |
|
""" |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer': self._optimizer.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer.load_state_dict(state_dict['optimizer']) |
|
|
|
def _init_collect(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the collect mode of policy, including related attributes and modules. For DQN, it contains the \ |
|
collect_model to balance the exploration and exploitation with epsilon-greedy sample mechanism, and other \ |
|
algorithm-specific arguments such as unroll_len and nstep. |
|
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ |
|
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. |
|
|
|
.. tip:: |
|
Some variables need to initialize independently in different modes, such as gamma and nstep in DQN. This \ |
|
design is for the convenience of parallel execution of different policy modes. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._gamma = self._cfg.discount_factor |
|
self._nstep = self._cfg.nstep |
|
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ |
|
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ |
|
data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \ |
|
exploration, i.e., classic epsilon-greedy exploration strategy. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
- eps (:obj:`float`): The epsilon value for exploration. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ |
|
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ |
|
dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, eps=eps) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. In DQN with nstep TD, a train sample is a processed transition. \ |
|
This method is usually used in collectors to execute necessary \ |
|
RL data preprocessing before training, which can help learner amortize revelant time consumption. \ |
|
In addition, you can also implement this method as an identity function and do the data processing \ |
|
in ``self._forward_learn`` method. |
|
Arguments: |
|
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ |
|
in the same format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is similar in format \ |
|
to input transitions, but may contain more data for training, such as nstep reward and target obs. |
|
""" |
|
transitions = get_nstep_return_data(transitions, self._nstep, gamma=self._gamma) |
|
return get_train_sample(transitions, self._unroll_len) |
|
|
|
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], |
|
timestep: namedtuple) -> Dict[str, torch.Tensor]: |
|
""" |
|
Overview: |
|
Process and pack one timestep transition data into a dict, which can be directly used for training and \ |
|
saved in replay buffer. For DQN, it contains obs, next_obs, action, reward, done. |
|
Arguments: |
|
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. |
|
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ |
|
as input. For DQN, it contains the action and the logit (q_value) of the action. |
|
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ |
|
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ |
|
reward, done, info, etc. |
|
Returns: |
|
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'action': policy_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For DQN, it contains the \ |
|
eval model to greedily select action with argmax q_value mechanism. |
|
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ |
|
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ |
|
action to interact with the envs. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DQNPolicy: ``ding.policy.tests.test_dqn``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def calculate_priority(self, data: Dict[int, Any], update_target_model: bool = False) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Calculate priority for replay buffer. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training. |
|
- update_target_model (:obj:`bool`): Whether to update target model. |
|
Returns: |
|
- priority (:obj:`Dict[str, Any]`): Dict type priority data, values are python scalar or a list of scalars. |
|
ArgumentsKeys: |
|
- necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done`` |
|
- optional: ``value_gamma`` |
|
ReturnsKeys: |
|
- necessary: ``priority`` |
|
""" |
|
|
|
if update_target_model: |
|
self._target_model.load_state_dict(self._learn_model.state_dict()) |
|
|
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=False, |
|
use_priority_IS_weight=False, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=True |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
self._learn_model.eval() |
|
self._target_model.eval() |
|
with torch.no_grad(): |
|
|
|
q_value = self._learn_model.forward(data['obs'])['logit'] |
|
|
|
target_q_value = self._target_model.forward(data['next_obs'])['logit'] |
|
|
|
target_q_action = self._learn_model.forward(data['next_obs'])['action'] |
|
data_n = q_nstep_td_data( |
|
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] |
|
) |
|
value_gamma = data.get('value_gamma') |
|
loss, td_error_per_sample = q_nstep_td_error( |
|
data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma |
|
) |
|
return {'priority': td_error_per_sample.abs().tolist()} |
|
|
|
|
|
@POLICY_REGISTRY.register('dqn_stdim') |
|
class DQNSTDIMPolicy(DQNPolicy): |
|
""" |
|
Overview: |
|
Policy class of DQN algorithm, extended by ST-DIM auxiliary objectives. |
|
ST-DIM paper link: https://arxiv.org/abs/1906.08226. |
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str dqn_stdim | RL policy register name, refer to | This arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4 ``priority`` bool False | Whether use priority(PER) | Priority sample, |
|
| update priority |
|
5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight |
|
| ``_weight`` | to correct biased update. If True, |
|
| priority must be True. |
|
6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse |
|
| ``factor`` [0.95, 0.999] | gamma | reward env |
|
7 ``nstep`` int 1, | N-step reward discount sum for target |
|
[3, 5] | q_value estimation |
|
8 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary |
|
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
| ``_gpu`` |
|
10 | ``learn.batch_`` int 64 | The number of samples of an iteration |
|
| ``size`` |
|
11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. |
|
| ``_rate`` |
|
12 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update |
|
| ``update_freq`` |
|
13 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some |
|
| ``done`` | calculation. | fake termination env |
|
14 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from |
|
| call of collector. | different envs |
|
15 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 |
|
| ``_len`` |
|
16 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', |
|
| 'linear']. |
|
17 | ``other.eps.`` float 0.95 | start value of exploration rate | [0,1] |
|
| ``start`` |
|
18 | ``other.eps.`` float 0.1 | end value of exploration rate | [0,1] |
|
| ``end`` |
|
19 | ``other.eps.`` int 10000 | decay length of exploration | greater than 0. set |
|
| ``decay`` | decay=10000 means |
|
| the exploration rate |
|
| decay from start |
|
| value to end value |
|
| during decay length. |
|
20 | ``aux_loss`` float 0.001 | the ratio of the auxiliary loss to | any real value, |
|
| ``_weight`` | the TD loss | typically in |
|
| [-0.1, 0.1]. |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
|
|
config = dict( |
|
|
|
type='dqn_stdim', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
discount_factor=0.97, |
|
|
|
nstep=1, |
|
|
|
aux_loss_weight=0.001, |
|
|
|
learn=dict( |
|
|
|
|
|
|
|
update_per_collect=3, |
|
|
|
batch_size=64, |
|
|
|
learning_rate=0.001, |
|
|
|
target_update_freq=100, |
|
|
|
ignore_done=False, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
|
|
|
|
unroll_len=1, |
|
), |
|
eval=dict(), |
|
|
|
other=dict( |
|
|
|
eps=dict( |
|
|
|
type='exp', |
|
|
|
start=0.95, |
|
|
|
end=0.1, |
|
|
|
decay=10000, |
|
), |
|
replay_buffer=dict( |
|
|
|
replay_buffer_size=10000, |
|
), |
|
), |
|
) |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For DQNSTDIM, it first \ |
|
call super class's ``_init_learn`` method, then initialize extra auxiliary model, its optimizer, and the \ |
|
loss weight. This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
super()._init_learn() |
|
x_size, y_size = self._get_encoding_size() |
|
self._aux_model = ContrastiveLoss(x_size, y_size, **self._cfg.aux_model) |
|
if self._cuda: |
|
self._aux_model.cuda() |
|
self._aux_optimizer = Adam(self._aux_model.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._aux_loss_weight = self._cfg.aux_loss_weight |
|
|
|
def _get_encoding_size(self) -> Tuple[Tuple[int], Tuple[int]]: |
|
""" |
|
Overview: |
|
Get the input encoding size of the ST-DIM axuiliary model. |
|
Returns: |
|
- info_dict (:obj:`Tuple[Tuple[int], Tuple[int]]`): The encoding size without the first (Batch) dimension. |
|
""" |
|
obs = self._cfg.model.obs_shape |
|
if isinstance(obs, int): |
|
obs = [obs] |
|
test_data = { |
|
"obs": torch.randn(1, *obs), |
|
"next_obs": torch.randn(1, *obs), |
|
} |
|
if self._cuda: |
|
test_data = to_device(test_data, self._device) |
|
with torch.no_grad(): |
|
x, y = self._model_encode(test_data) |
|
return x.size()[1:], y.size()[1:] |
|
|
|
def _model_encode(self, data: dict) -> Tuple[torch.Tensor]: |
|
""" |
|
Overview: |
|
Get the encoding of the main model as input for the auxiliary model. |
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, same as the _forward_learn input. |
|
Returns: |
|
- (:obj:`Tuple[torch.Tensor]`): the tuple of two tensors to apply contrastive embedding learning. \ |
|
In ST-DIM algorithm, these two variables are the dqn encoding of `obs` and `next_obs` respectively. |
|
""" |
|
assert hasattr(self._model, "encoder") |
|
x = self._model.encoder(data["obs"]) |
|
y = self._model.encoder(data["next_obs"]) |
|
return x, y |
|
|
|
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, q value, priority, aux_loss. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For DQNSTDIM, each element in list is a dict containing at least the following keys: ``obs``, \ |
|
``action``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as \ |
|
``weight`` and ``value_gamma``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
""" |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=True |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
x_no_grad, y_no_grad = self._model_encode(data) |
|
|
|
self._aux_model.train() |
|
aux_loss_learn = self._aux_model.forward(x_no_grad, y_no_grad) |
|
|
|
self._aux_optimizer.zero_grad() |
|
aux_loss_learn.backward() |
|
if self._cfg.multi_gpu: |
|
self.sync_gradients(self._aux_model) |
|
self._aux_optimizer.step() |
|
|
|
|
|
|
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
q_value = self._learn_model.forward(data['obs'])['logit'] |
|
|
|
with torch.no_grad(): |
|
target_q_value = self._target_model.forward(data['next_obs'])['logit'] |
|
|
|
target_q_action = self._learn_model.forward(data['next_obs'])['action'] |
|
|
|
data_n = q_nstep_td_data( |
|
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] |
|
) |
|
value_gamma = data.get('value_gamma') |
|
bellman_loss, td_error_per_sample = q_nstep_td_error( |
|
data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma |
|
) |
|
|
|
|
|
|
|
|
|
x, y = self._model_encode(data) |
|
self._aux_model.eval() |
|
aux_loss_eval = self._aux_model.forward(x, y) * self._aux_loss_weight |
|
loss = aux_loss_eval + bellman_loss |
|
|
|
|
|
|
|
|
|
self._optimizer.zero_grad() |
|
loss.backward() |
|
if self._cfg.multi_gpu: |
|
self.sync_gradients(self._learn_model) |
|
self._optimizer.step() |
|
|
|
|
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'bellman_loss': bellman_loss.item(), |
|
'aux_loss_learn': aux_loss_learn.item(), |
|
'aux_loss_eval': aux_loss_eval.item(), |
|
'total_loss': loss.item(), |
|
'q_value': q_value.mean().item(), |
|
'priority': td_error_per_sample.abs().tolist(), |
|
|
|
|
|
} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
return ['cur_lr', 'bellman_loss', 'aux_loss_learn', 'aux_loss_eval', 'total_loss', 'q_value'] |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model and optimizer. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. |
|
""" |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer': self._optimizer.state_dict(), |
|
'aux_optimizer': self._aux_optimizer.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer.load_state_dict(state_dict['optimizer']) |
|
self._aux_optimizer.load_state_dict(state_dict['aux_optimizer']) |
|
|