|
from typing import List, Dict, Any, Tuple, Optional |
|
from collections import namedtuple |
|
import torch.nn.functional as F |
|
import torch |
|
import numpy as np |
|
from ding.torch_utils import to_device |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_decollate |
|
from .base_policy import Policy |
|
|
|
|
|
@POLICY_REGISTRY.register('dt') |
|
class DTPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of Decision Transformer algorithm in discrete environments. |
|
Paper link: https://arxiv.org/abs/2106.01345. |
|
""" |
|
config = dict( |
|
|
|
type='dt', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
obs_shape=4, |
|
action_shape=2, |
|
rtg_scale=1000, |
|
max_eval_ep_len=1000, |
|
batch_size=64, |
|
wt_decay=1e-4, |
|
warmup_steps=10000, |
|
context_len=20, |
|
learning_rate=1e-4, |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
|
|
.. note:: |
|
The user can define and use customized network model but must obey the same inferface definition indicated \ |
|
by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \ |
|
``ding.model.template.q_learning``. |
|
""" |
|
return 'dt', ['ding.model.template.dt'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For Decision Transformer, \ |
|
it mainly contains the optimizer, algorithm-specific arguments such as rtg_scale and lr scheduler. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
|
|
|
|
|
|
|
|
self.rtg_scale = self._cfg.rtg_scale |
|
self.rtg_target = self._cfg.rtg_target |
|
self.max_eval_ep_len = self._cfg.max_eval_ep_len |
|
|
|
lr = self._cfg.learning_rate |
|
wt_decay = self._cfg.wt_decay |
|
warmup_steps = self._cfg.warmup_steps |
|
|
|
self.clip_grad_norm_p = self._cfg.clip_grad_norm_p |
|
self.context_len = self._cfg.model.context_len |
|
|
|
self.state_dim = self._cfg.model.state_dim |
|
self.act_dim = self._cfg.model.act_dim |
|
|
|
self._learn_model = self._model |
|
self._atari_env = 'state_mean' not in self._cfg |
|
self._basic_discrete_env = not self._cfg.model.continuous and 'state_mean' in self._cfg |
|
|
|
if self._atari_env: |
|
self._optimizer = self._learn_model.configure_optimizers(wt_decay, lr) |
|
else: |
|
self._optimizer = torch.optim.AdamW(self._learn_model.parameters(), lr=lr, weight_decay=wt_decay) |
|
|
|
self._scheduler = torch.optim.lr_scheduler.LambdaLR( |
|
self._optimizer, lambda steps: min((steps + 1) / warmup_steps, 1) |
|
) |
|
|
|
self.max_env_score = -1.0 |
|
|
|
def _forward_learn(self, data: List[torch.Tensor]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the offline dataset and then returns the output \ |
|
result, including various training information such as loss, current learning rate. |
|
Arguments: |
|
- data (:obj:`List[torch.Tensor]`): The input data used for policy forward, including a series of \ |
|
processed torch.Tensor data, i.e., timesteps, states, actions, returns_to_go, traj_mask. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
""" |
|
self._learn_model.train() |
|
|
|
timesteps, states, actions, returns_to_go, traj_mask = data |
|
|
|
|
|
|
|
if len(returns_to_go.shape) == 2: |
|
returns_to_go = returns_to_go.unsqueeze(-1) |
|
|
|
if self._basic_discrete_env: |
|
actions = actions.to(torch.long) |
|
actions = actions.squeeze(-1) |
|
action_target = torch.clone(actions).detach().to(self._device) |
|
|
|
if self._atari_env: |
|
state_preds, action_preds, return_preds = self._learn_model.forward( |
|
timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go, tar=1 |
|
) |
|
else: |
|
state_preds, action_preds, return_preds = self._learn_model.forward( |
|
timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go |
|
) |
|
|
|
if self._atari_env: |
|
action_loss = F.cross_entropy(action_preds.reshape(-1, action_preds.size(-1)), action_target.reshape(-1)) |
|
else: |
|
traj_mask = traj_mask.view(-1, ) |
|
|
|
|
|
action_preds = action_preds.view(-1, self.act_dim)[traj_mask > 0] |
|
|
|
if self._cfg.model.continuous: |
|
action_target = action_target.view(-1, self.act_dim)[traj_mask > 0] |
|
action_loss = F.mse_loss(action_preds, action_target) |
|
else: |
|
action_target = action_target.view(-1)[traj_mask > 0] |
|
action_loss = F.cross_entropy(action_preds, action_target) |
|
|
|
self._optimizer.zero_grad() |
|
action_loss.backward() |
|
if self._cfg.multi_gpu: |
|
self.sync_gradients(self._learn_model) |
|
torch.nn.utils.clip_grad_norm_(self._learn_model.parameters(), self.clip_grad_norm_p) |
|
self._optimizer.step() |
|
self._scheduler.step() |
|
|
|
return { |
|
'cur_lr': self._optimizer.state_dict()['param_groups'][0]['lr'], |
|
'action_loss': action_loss.detach().cpu().item(), |
|
'total_loss': action_loss.detach().cpu().item(), |
|
} |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For DQN, it contains the \ |
|
eval model, some algorithm-specific parameters such as context_len, max_eval_ep_len, etc. |
|
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. tip:: |
|
For the evaluation of complete episodes, we need to maintain some historical information for transformer \ |
|
inference. These variables need to be initialized in ``_init_eval`` and reset in ``_reset_eval`` when \ |
|
necessary. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = self._model |
|
|
|
self._device = torch.device(self._device) |
|
self.rtg_scale = self._cfg.rtg_scale |
|
self.rtg_target = self._cfg.rtg_target |
|
self.state_dim = self._cfg.model.state_dim |
|
self.act_dim = self._cfg.model.act_dim |
|
self.eval_batch_size = self._cfg.evaluator_env_num |
|
self.max_eval_ep_len = self._cfg.max_eval_ep_len |
|
self.context_len = self._cfg.model.context_len |
|
|
|
self.t = [0 for _ in range(self.eval_batch_size)] |
|
if self._cfg.model.continuous: |
|
self.actions = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self._device |
|
) |
|
else: |
|
self.actions = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.long, device=self._device |
|
) |
|
self._atari_env = 'state_mean' not in self._cfg |
|
self._basic_discrete_env = not self._cfg.model.continuous and 'state_mean' in self._cfg |
|
if self._atari_env: |
|
self.states = torch.zeros( |
|
( |
|
self.eval_batch_size, |
|
self.max_eval_ep_len, |
|
) + tuple(self.state_dim), |
|
dtype=torch.float32, |
|
device=self._device |
|
) |
|
self.running_rtg = [self.rtg_target for _ in range(self.eval_batch_size)] |
|
else: |
|
self.running_rtg = [self.rtg_target / self.rtg_scale for _ in range(self.eval_batch_size)] |
|
self.states = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self._device |
|
) |
|
self.state_mean = torch.from_numpy(np.array(self._cfg.state_mean)).to(self._device) |
|
self.state_std = torch.from_numpy(np.array(self._cfg.state_std)).to(self._device) |
|
self.timesteps = torch.arange( |
|
start=0, end=self.max_eval_ep_len, step=1 |
|
).repeat(self.eval_batch_size, 1).to(self._device) |
|
self.rewards_to_go = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device |
|
) |
|
|
|
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance, such as interacting with envs. \ |
|
Forward means that the policy gets some input data (current obs/return-to-go and historical information) \ |
|
from the envs and then returns the output data, such as the action to interact with the envs. \ |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs and \ |
|
reward to calculate running return-to-go. The key of the dict is environment id and the value is the \ |
|
corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
Decision Transformer will do different operations for different types of envs in evaluation. |
|
""" |
|
|
|
data_id = list(data.keys()) |
|
|
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
if self._atari_env: |
|
states = torch.zeros( |
|
( |
|
self.eval_batch_size, |
|
self.context_len, |
|
) + tuple(self.state_dim), |
|
dtype=torch.float32, |
|
device=self._device |
|
) |
|
timesteps = torch.zeros((self.eval_batch_size, 1, 1), dtype=torch.long, device=self._device) |
|
else: |
|
states = torch.zeros( |
|
(self.eval_batch_size, self.context_len, self.state_dim), dtype=torch.float32, device=self._device |
|
) |
|
timesteps = torch.zeros((self.eval_batch_size, self.context_len), dtype=torch.long, device=self._device) |
|
if not self._cfg.model.continuous: |
|
actions = torch.zeros( |
|
(self.eval_batch_size, self.context_len, 1), dtype=torch.long, device=self._device |
|
) |
|
else: |
|
actions = torch.zeros( |
|
(self.eval_batch_size, self.context_len, self.act_dim), dtype=torch.float32, device=self._device |
|
) |
|
rewards_to_go = torch.zeros( |
|
(self.eval_batch_size, self.context_len, 1), dtype=torch.float32, device=self._device |
|
) |
|
for i in data_id: |
|
if self._atari_env: |
|
self.states[i, self.t[i]] = data[i]['obs'].to(self._device) |
|
else: |
|
self.states[i, self.t[i]] = (data[i]['obs'].to(self._device) - self.state_mean) / self.state_std |
|
self.running_rtg[i] = self.running_rtg[i] - (data[i]['reward'] / self.rtg_scale).to(self._device) |
|
self.rewards_to_go[i, self.t[i]] = self.running_rtg[i] |
|
|
|
if self.t[i] <= self.context_len: |
|
if self._atari_env: |
|
timesteps[i] = min(self.t[i], self._cfg.model.max_timestep) * torch.ones( |
|
(1, 1), dtype=torch.int64 |
|
).to(self._device) |
|
else: |
|
timesteps[i] = self.timesteps[i, :self.context_len] |
|
states[i] = self.states[i, :self.context_len] |
|
actions[i] = self.actions[i, :self.context_len] |
|
rewards_to_go[i] = self.rewards_to_go[i, :self.context_len] |
|
else: |
|
if self._atari_env: |
|
timesteps[i] = min(self.t[i], self._cfg.model.max_timestep) * torch.ones( |
|
(1, 1), dtype=torch.int64 |
|
).to(self._device) |
|
else: |
|
timesteps[i] = self.timesteps[i, self.t[i] - self.context_len + 1:self.t[i] + 1] |
|
states[i] = self.states[i, self.t[i] - self.context_len + 1:self.t[i] + 1] |
|
actions[i] = self.actions[i, self.t[i] - self.context_len + 1:self.t[i] + 1] |
|
rewards_to_go[i] = self.rewards_to_go[i, self.t[i] - self.context_len + 1:self.t[i] + 1] |
|
if self._basic_discrete_env: |
|
actions = actions.squeeze(-1) |
|
_, act_preds, _ = self._eval_model.forward(timesteps, states, actions, rewards_to_go) |
|
del timesteps, states, actions, rewards_to_go |
|
|
|
logits = act_preds[:, -1, :] |
|
if not self._cfg.model.continuous: |
|
if self._atari_env: |
|
probs = F.softmax(logits, dim=-1) |
|
act = torch.zeros((self.eval_batch_size, 1), dtype=torch.long, device=self._device) |
|
for i in data_id: |
|
act[i] = torch.multinomial(probs[i], num_samples=1) |
|
else: |
|
act = torch.argmax(logits, axis=1).unsqueeze(1) |
|
else: |
|
act = logits |
|
for i in data_id: |
|
self.actions[i, self.t[i]] = act[i] |
|
self.t[i] += 1 |
|
|
|
if self._cuda: |
|
act = to_device(act, 'cpu') |
|
output = {'action': act} |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None: |
|
""" |
|
Overview: |
|
Reset some stateful variables for eval mode when necessary, such as the historical info of transformer \ |
|
for decision transformer. If ``data_id`` is None, it means to reset all the stateful \ |
|
varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \ |
|
different environments/episodes in evaluation in ``data_id`` will have different history. |
|
Arguments: |
|
- data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \ |
|
specified by ``data_id``. |
|
""" |
|
|
|
if data_id is None: |
|
self.t = [0 for _ in range(self.eval_batch_size)] |
|
self.timesteps = torch.arange( |
|
start=0, end=self.max_eval_ep_len, step=1 |
|
).repeat(self.eval_batch_size, 1).to(self._device) |
|
if not self._cfg.model.continuous: |
|
self.actions = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.long, device=self._device |
|
) |
|
else: |
|
self.actions = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, self.act_dim), |
|
dtype=torch.float32, |
|
device=self._device |
|
) |
|
if self._atari_env: |
|
self.states = torch.zeros( |
|
( |
|
self.eval_batch_size, |
|
self.max_eval_ep_len, |
|
) + tuple(self.state_dim), |
|
dtype=torch.float32, |
|
device=self._device |
|
) |
|
self.running_rtg = [self.rtg_target for _ in range(self.eval_batch_size)] |
|
else: |
|
self.states = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, self.state_dim), |
|
dtype=torch.float32, |
|
device=self._device |
|
) |
|
self.running_rtg = [self.rtg_target / self.rtg_scale for _ in range(self.eval_batch_size)] |
|
|
|
self.rewards_to_go = torch.zeros( |
|
(self.eval_batch_size, self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device |
|
) |
|
else: |
|
for i in data_id: |
|
self.t[i] = 0 |
|
if not self._cfg.model.continuous: |
|
self.actions[i] = torch.zeros((self.max_eval_ep_len, 1), dtype=torch.long, device=self._device) |
|
else: |
|
self.actions[i] = torch.zeros( |
|
(self.max_eval_ep_len, self.act_dim), dtype=torch.float32, device=self._device |
|
) |
|
if self._atari_env: |
|
self.states[i] = torch.zeros( |
|
(self.max_eval_ep_len, ) + tuple(self.state_dim), dtype=torch.float32, device=self._device |
|
) |
|
self.running_rtg[i] = self.rtg_target |
|
else: |
|
self.states[i] = torch.zeros( |
|
(self.max_eval_ep_len, self.state_dim), dtype=torch.float32, device=self._device |
|
) |
|
self.running_rtg[i] = self.rtg_target / self.rtg_scale |
|
self.timesteps[i] = torch.arange(start=0, end=self.max_eval_ep_len, step=1).to(self._device) |
|
self.rewards_to_go[i] = torch.zeros((self.max_eval_ep_len, 1), dtype=torch.float32, device=self._device) |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
return ['cur_lr', 'action_loss'] |
|
|
|
def _init_collect(self) -> None: |
|
pass |
|
|
|
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: |
|
pass |
|
|
|
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
pass |
|
|
|
def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]: |
|
pass |
|
|