gomoku / DI-engine /ding /reward_model /red_irl_model.py
zjowowen's picture
init space
079c32c
raw
history blame
10.4 kB
from typing import Dict, List
import pickle
import random
import torch
import torch.nn as nn
import torch.optim as optim
from ding.utils import REWARD_MODEL_REGISTRY, one_time_warning
from .base_reward_model import BaseRewardModel
class SENet(nn.Module):
"""support estimation network"""
def __init__(self, input_size: int, hidden_size: int, output_dims: int) -> None:
super(SENet, self).__init__()
self.l_1 = nn.Linear(input_size, hidden_size)
self.l_2 = nn.Linear(hidden_size, output_dims)
self.act = nn.Tanh()
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.l_1(x)
out = self.act(out)
out = self.l_2(out)
out = self.act(out)
return out
@REWARD_MODEL_REGISTRY.register('red')
class RedRewardModel(BaseRewardModel):
"""
Overview:
The implement of reward model in RED (https://arxiv.org/abs/1905.06750)
Interface:
``estimate``, ``train``, ``load_expert_data``, ``collect_data``, ``clear_date``, \
``__init__``, ``_train``
Config:
== ================== ===== ============= ======================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ================== ===== ============= ======================================= =======================
1 ``type`` str red | Reward model register name, refer |
| to registry ``REWARD_MODEL_REGISTRY`` |
2 | ``expert_data_`` str expert_data | Path to the expert dataset | Should be a '.pkl'
| ``path`` .pkl | | file
3 | ``sample_size`` int 1000 | sample data from expert dataset |
| with fixed size |
4 | ``sigma`` int 5 | hyperparameter of r(s,a) | r(s,a) = exp(
| -sigma* L(s,a))
5 | ``batch_size`` int 64 | Training batch size |
6 | ``hidden_size`` int 128 | Linear model hidden size |
7 | ``update_per_`` int 100 | Number of updates per collect |
| ``collect`` | |
8 | ``clear_buffer`` int 1 | clear buffer per fixed iters | make sure replay
``_per_iters`` | buffer's data count
| isn't too few.
| (code work in entry)
== ================== ===== ============= ======================================= =======================
Properties:
- online_net (:obj: `SENet`): The reward model, in default initialized once as the training begins.
"""
config = dict(
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
type='red',
# (int) Linear model input size.
# input_size=4,
# (int) Sample data from expert dataset with fixed size.
sample_size=1000,
# (int) Linear model hidden size.
hidden_size=128,
# (float) The step size of gradient descent.
learning_rate=1e-3,
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=100,
# (str) Path to the expert dataset
# expert_data_path='expert_data.pkl',
# (int) How many samples in a training batch.
batch_size=64,
# (float) Hyperparameter at estimated score of r(s,a).
# r(s,a) = exp(-sigma* L(s,a))
sigma=0.5,
# (int) Clear buffer per fixed iters.
clear_buffer_per_iters=1,
)
def __init__(self, config: Dict, device: str, tb_logger: 'SummaryWriter') -> None: # noqa
"""
Overview:
Initialize ``self.`` See ``help(type(self))`` for accurate signature.
Arguments:
- cfg (:obj:`Dict`): Training config
- device (:obj:`str`): Device usage, i.e. "cpu" or "cuda"
- tb_logger (:obj:`str`): Logger, defaultly set as 'SummaryWriter' for model summary
"""
super(RedRewardModel, self).__init__()
self.cfg: Dict = config
self.expert_data: List[tuple] = []
self.device = device
assert device in ["cpu", "cuda"] or "cuda" in device
self.tb_logger = tb_logger
self.target_net: SENet = SENet(config.input_size, config.hidden_size, 1)
self.online_net: SENet = SENet(config.input_size, config.hidden_size, 1)
self.target_net.to(device)
self.online_net.to(device)
self.opt: optim.Adam = optim.Adam(self.online_net.parameters(), config.learning_rate)
self.train_once_flag = False
self.load_expert_data()
def load_expert_data(self) -> None:
"""
Overview:
Getting the expert data from ``config['expert_data_path']`` attribute in self.
Effects:
This is a side effect function which updates the expert data attribute (e.g. ``self.expert_data``)
"""
with open(self.cfg.expert_data_path, 'rb') as f:
self.expert_data = pickle.load(f)
sample_size = min(len(self.expert_data), self.cfg.sample_size)
self.expert_data = random.sample(self.expert_data, sample_size)
print('the expert data size is:', len(self.expert_data))
def _train(self, batch_data: torch.Tensor) -> float:
"""
Overview:
Helper function for ``train`` which caclulates loss for train data and expert data.
Arguments:
- batch_data (:obj:`torch.Tensor`): Data used for training
Returns:
- Combined loss calculated of reward model from using ``batch_data`` in both target and reward models.
"""
with torch.no_grad():
target = self.target_net(batch_data)
hat: torch.Tensor = self.online_net(batch_data)
loss: torch.Tensor = ((hat - target) ** 2).mean()
self.opt.zero_grad()
loss.backward()
self.opt.step()
return loss.item()
def train(self) -> None:
"""
Overview:
Training the RED reward model. In default, RED model should be trained once.
Effects:
- This is a side effect function which updates the reward model and increment the train iteration count.
"""
if self.train_once_flag:
one_time_warning('RED model should be trained once, we do not train it anymore')
else:
for i in range(self.cfg.update_per_collect):
sample_batch = random.sample(self.expert_data, self.cfg.batch_size)
states_data = []
actions_data = []
for item in sample_batch:
states_data.append(item['obs'])
actions_data.append(item['action'])
states_tensor: torch.Tensor = torch.stack(states_data).float()
actions_tensor: torch.Tensor = torch.stack(actions_data).float()
states_actions_tensor: torch.Tensor = torch.cat([states_tensor, actions_tensor], dim=1)
states_actions_tensor = states_actions_tensor.to(self.device)
loss = self._train(states_actions_tensor)
self.tb_logger.add_scalar('reward_model/red_loss', loss, i)
self.train_once_flag = True
def estimate(self, data: list) -> List[Dict]:
"""
Overview:
Estimate reward by rewriting the reward key
Arguments:
- data (:obj:`list`): the list of data used for estimation, \
with at least ``obs`` and ``action`` keys.
Effects:
- This is a side effect function which updates the reward values in place.
"""
# NOTE: deepcopy reward part of data is very important,
# otherwise the reward of data in the replay buffer will be incorrectly modified.
train_data_augmented = self.reward_deepcopy(data)
states_data = []
actions_data = []
for item in train_data_augmented:
states_data.append(item['obs'])
actions_data.append(item['action'])
states_tensor = torch.stack(states_data).float()
actions_tensor = torch.stack(actions_data).float()
states_actions_tensor = torch.cat([states_tensor, actions_tensor], dim=1)
states_actions_tensor = states_actions_tensor.to(self.device)
with torch.no_grad():
hat_1 = self.online_net(states_actions_tensor)
hat_2 = self.target_net(states_actions_tensor)
c = ((hat_1 - hat_2) ** 2).mean(dim=1)
r = torch.exp(-self.cfg.sigma * c)
for item, rew in zip(train_data_augmented, r):
item['reward'] = rew
return train_data_augmented
def collect_data(self, data) -> None:
"""
Overview:
Collecting training data, not implemented if reward model (i.e. online_net) is only trained ones, \
if online_net is trained continuously, there should be some implementations in collect_data method
"""
# if online_net is trained continuously, there should be some implementations in collect_data method
pass
def clear_data(self):
"""
Overview:
Collecting clearing data, not implemented if reward model (i.e. online_net) is only trained ones, \
if online_net is trained continuously, there should be some implementations in clear_data method
"""
# if online_net is trained continuously, there should be some implementations in clear_data method
pass