|
|
|
|
|
#include <iostream> |
|
#include "cnode.h" |
|
#include <algorithm> |
|
#include <map> |
|
#include <cassert> |
|
|
|
#ifdef _WIN32 |
|
#include "..\..\common_lib\utils.cpp" |
|
#else |
|
#include "../../common_lib/utils.cpp" |
|
#endif |
|
|
|
|
|
namespace tree |
|
{ |
|
|
|
CSearchResults::CSearchResults() |
|
{ |
|
|
|
|
|
|
|
|
|
this->num = 0; |
|
} |
|
|
|
CSearchResults::CSearchResults(int num) |
|
{ |
|
|
|
|
|
|
|
|
|
this->num = num; |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
this->search_paths.push_back(std::vector<CNode *>()); |
|
} |
|
} |
|
|
|
CSearchResults::~CSearchResults() {} |
|
|
|
|
|
|
|
CNode::CNode() |
|
{ |
|
|
|
|
|
|
|
|
|
this->prior = 0; |
|
this->legal_actions = legal_actions; |
|
|
|
this->visit_count = 0; |
|
this->value_sum = 0; |
|
this->best_action = -1; |
|
this->to_play = 0; |
|
this->reward = 0.0; |
|
} |
|
|
|
CNode::CNode(float prior, std::vector<int> &legal_actions) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
this->prior = prior; |
|
this->legal_actions = legal_actions; |
|
|
|
this->visit_count = 0; |
|
this->value_sum = 0; |
|
this->best_action = -1; |
|
this->to_play = 0; |
|
this->current_latent_state_index = -1; |
|
this->batch_index = -1; |
|
} |
|
|
|
CNode::~CNode() {} |
|
|
|
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float reward, const std::vector<float> &policy_logits) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
this->to_play = to_play; |
|
this->current_latent_state_index = current_latent_state_index; |
|
this->batch_index = batch_index; |
|
this->reward = reward; |
|
|
|
int action_num = policy_logits.size(); |
|
if (this->legal_actions.size() == 0) |
|
{ |
|
for (int i = 0; i < action_num; ++i) |
|
{ |
|
this->legal_actions.push_back(i); |
|
} |
|
} |
|
float temp_policy; |
|
float policy_sum = 0.0; |
|
|
|
#ifdef _WIN32 |
|
|
|
float* policy = new float[action_num]; |
|
#else |
|
float policy[action_num]; |
|
#endif |
|
|
|
float policy_max = FLOAT_MIN; |
|
for (auto a : this->legal_actions) |
|
{ |
|
if (policy_max < policy_logits[a]) |
|
{ |
|
policy_max = policy_logits[a]; |
|
} |
|
} |
|
|
|
for (auto a : this->legal_actions) |
|
{ |
|
temp_policy = exp(policy_logits[a] - policy_max); |
|
policy_sum += temp_policy; |
|
policy[a] = temp_policy; |
|
} |
|
|
|
float prior; |
|
for (auto a : this->legal_actions) |
|
{ |
|
prior = policy[a] / policy_sum; |
|
std::vector<int> tmp_empty; |
|
this->children[a] = CNode(prior, tmp_empty); |
|
} |
|
|
|
#ifdef _WIN32 |
|
|
|
delete[] policy; |
|
#else |
|
#endif |
|
} |
|
|
|
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float noise, prior; |
|
for (int i = 0; i < this->legal_actions.size(); ++i) |
|
{ |
|
noise = noises[i]; |
|
CNode *child = this->get_child(this->legal_actions[i]); |
|
|
|
prior = child->prior; |
|
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction; |
|
} |
|
} |
|
|
|
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float total_unsigned_q = 0.0; |
|
int total_visits = 0; |
|
for (auto a : this->legal_actions) |
|
{ |
|
CNode *child = this->get_child(a); |
|
if (child->visit_count > 0) |
|
{ |
|
float true_reward = child->reward; |
|
float qsa = true_reward + discount_factor * child->value(); |
|
total_unsigned_q += qsa; |
|
total_visits += 1; |
|
} |
|
} |
|
|
|
float mean_q = 0.0; |
|
if (isRoot && total_visits > 0) |
|
{ |
|
mean_q = (total_unsigned_q) / (total_visits); |
|
} |
|
else |
|
{ |
|
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1); |
|
} |
|
return mean_q; |
|
} |
|
|
|
void CNode::print_out() |
|
{ |
|
return; |
|
} |
|
|
|
int CNode::expanded() |
|
{ |
|
|
|
|
|
|
|
|
|
return this->children.size() > 0; |
|
} |
|
|
|
float CNode::value() |
|
{ |
|
|
|
|
|
|
|
|
|
float true_value = 0.0; |
|
if (this->visit_count == 0) |
|
{ |
|
return true_value; |
|
} |
|
else |
|
{ |
|
true_value = this->value_sum / this->visit_count; |
|
return true_value; |
|
} |
|
} |
|
|
|
std::vector<int> CNode::get_trajectory() |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<int> traj; |
|
|
|
CNode *node = this; |
|
int best_action = node->best_action; |
|
while (best_action >= 0) |
|
{ |
|
traj.push_back(best_action); |
|
|
|
node = node->get_child(best_action); |
|
best_action = node->best_action; |
|
} |
|
return traj; |
|
} |
|
|
|
std::vector<int> CNode::get_children_distribution() |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<int> distribution; |
|
if (this->expanded()) |
|
{ |
|
for (auto a : this->legal_actions) |
|
{ |
|
CNode *child = this->get_child(a); |
|
distribution.push_back(child->visit_count); |
|
} |
|
} |
|
return distribution; |
|
} |
|
|
|
CNode *CNode::get_child(int action) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
return &(this->children[action]); |
|
} |
|
|
|
|
|
|
|
CRoots::CRoots() |
|
{ |
|
|
|
|
|
|
|
|
|
this->root_num = 0; |
|
} |
|
|
|
CRoots::CRoots(int root_num, std::vector<std::vector<int> > &legal_actions_list) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
this->root_num = root_num; |
|
this->legal_actions_list = legal_actions_list; |
|
|
|
for (int i = 0; i < root_num; ++i) |
|
{ |
|
this->roots.push_back(CNode(0, this->legal_actions_list[i])); |
|
} |
|
} |
|
|
|
CRoots::~CRoots() {} |
|
|
|
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < this->root_num; ++i) |
|
{ |
|
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i]); |
|
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]); |
|
|
|
this->roots[i].visit_count += 1; |
|
} |
|
} |
|
|
|
void CRoots::prepare_no_noise(const std::vector<float> &rewards, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < this->root_num; ++i) |
|
{ |
|
this->roots[i].expand(to_play_batch[i], 0, i, rewards[i], policies[i]); |
|
|
|
this->roots[i].visit_count += 1; |
|
} |
|
} |
|
|
|
void CRoots::clear() |
|
{ |
|
|
|
|
|
|
|
|
|
this->roots.clear(); |
|
} |
|
|
|
std::vector<std::vector<int> > CRoots::get_trajectories() |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<std::vector<int> > trajs; |
|
trajs.reserve(this->root_num); |
|
|
|
for (int i = 0; i < this->root_num; ++i) |
|
{ |
|
trajs.push_back(this->roots[i].get_trajectory()); |
|
} |
|
return trajs; |
|
} |
|
|
|
std::vector<std::vector<int> > CRoots::get_distributions() |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<std::vector<int> > distributions; |
|
distributions.reserve(this->root_num); |
|
|
|
for (int i = 0; i < this->root_num; ++i) |
|
{ |
|
distributions.push_back(this->roots[i].get_children_distribution()); |
|
} |
|
return distributions; |
|
} |
|
|
|
std::vector<float> CRoots::get_values() |
|
{ |
|
|
|
|
|
|
|
|
|
std::vector<float> values; |
|
for (int i = 0; i < this->root_num; ++i) |
|
{ |
|
values.push_back(this->roots[i].value()); |
|
} |
|
return values; |
|
} |
|
|
|
|
|
|
|
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::stack<CNode *> node_stack; |
|
node_stack.push(root); |
|
while (node_stack.size() > 0) |
|
{ |
|
CNode *node = node_stack.top(); |
|
node_stack.pop(); |
|
|
|
if (node != root) |
|
{ |
|
|
|
|
|
|
|
|
|
float true_reward = node->reward; |
|
|
|
float qsa; |
|
if (players == 1) |
|
qsa = true_reward + discount_factor * node->value(); |
|
else if (players == 2) |
|
|
|
qsa = true_reward + discount_factor * (-1) * node->value(); |
|
|
|
min_max_stats.update(qsa); |
|
} |
|
|
|
for (auto a : node->legal_actions) |
|
{ |
|
CNode *child = node->get_child(a); |
|
if (child->expanded()) |
|
{ |
|
node_stack.push(child); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert(to_play == -1 || to_play == 1 || to_play == 2); |
|
if (to_play == -1) |
|
{ |
|
|
|
float bootstrap_value = value; |
|
int path_len = search_path.size(); |
|
for (int i = path_len - 1; i >= 0; --i) |
|
{ |
|
CNode *node = search_path[i]; |
|
node->value_sum += bootstrap_value; |
|
node->visit_count += 1; |
|
|
|
float true_reward = node->reward; |
|
|
|
min_max_stats.update(true_reward + discount_factor * node->value()); |
|
|
|
bootstrap_value = true_reward + discount_factor * bootstrap_value; |
|
} |
|
} |
|
else |
|
{ |
|
|
|
float bootstrap_value = value; |
|
int path_len = search_path.size(); |
|
for (int i = path_len - 1; i >= 0; --i) |
|
{ |
|
CNode *node = search_path[i]; |
|
if (node->to_play == to_play) |
|
node->value_sum += bootstrap_value; |
|
else |
|
node->value_sum += -bootstrap_value; |
|
node->visit_count += 1; |
|
|
|
|
|
|
|
|
|
float true_reward = node->reward; |
|
|
|
|
|
min_max_stats.update(true_reward + discount_factor * -node->value()); |
|
|
|
if (node->to_play == to_play) |
|
bootstrap_value = -true_reward + discount_factor * bootstrap_value; |
|
else |
|
bootstrap_value = true_reward + discount_factor * bootstrap_value; |
|
} |
|
} |
|
} |
|
|
|
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &to_play_batch) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < results.num; ++i) |
|
{ |
|
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], policies[i]); |
|
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor); |
|
} |
|
} |
|
|
|
int cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float max_score = FLOAT_MIN; |
|
const float epsilon = 0.000001; |
|
std::vector<int> max_index_lst; |
|
for (auto a : root->legal_actions) |
|
{ |
|
|
|
CNode *child = root->get_child(a); |
|
float temp_score = cucb_score(child, min_max_stats, mean_q, root->visit_count - 1, pb_c_base, pb_c_init, discount_factor, players); |
|
|
|
if (max_score < temp_score) |
|
{ |
|
max_score = temp_score; |
|
|
|
max_index_lst.clear(); |
|
max_index_lst.push_back(a); |
|
} |
|
else if (temp_score >= max_score - epsilon) |
|
{ |
|
max_index_lst.push_back(a); |
|
} |
|
} |
|
|
|
int action = 0; |
|
if (max_index_lst.size() > 0) |
|
{ |
|
int rand_index = rand() % max_index_lst.size(); |
|
action = max_index_lst[rand_index]; |
|
} |
|
return action; |
|
} |
|
|
|
float cucb_score(CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, float total_children_visit_counts, float pb_c_base, float pb_c_init, float discount_factor, int players) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0; |
|
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init; |
|
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1)); |
|
|
|
prior_score = pb_c * child->prior; |
|
if (child->visit_count == 0) |
|
{ |
|
value_score = parent_mean_q; |
|
} |
|
else |
|
{ |
|
float true_reward = child->reward; |
|
if (players == 1) |
|
value_score = true_reward + discount_factor * child->value(); |
|
else if (players == 2) |
|
value_score = true_reward + discount_factor * (-child->value()); |
|
} |
|
|
|
value_score = min_max_stats.normalize(value_score); |
|
|
|
if (value_score < 0) |
|
value_score = 0; |
|
if (value_score > 1) |
|
value_score = 1; |
|
|
|
float ucb_value = prior_score + value_score; |
|
return ucb_value; |
|
} |
|
|
|
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
get_time_and_set_rand_seed(); |
|
|
|
int last_action = -1; |
|
float parent_q = 0.0; |
|
results.search_lens = std::vector<int>(); |
|
|
|
int players = 0; |
|
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); |
|
if (largest_element == -1) |
|
players = 1; |
|
else |
|
players = 2; |
|
|
|
for (int i = 0; i < results.num; ++i) |
|
{ |
|
CNode *node = &(roots->roots[i]); |
|
int is_root = 1; |
|
int search_len = 0; |
|
results.search_paths[i].push_back(node); |
|
|
|
while (node->expanded()) |
|
{ |
|
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor); |
|
is_root = 0; |
|
parent_q = mean_q; |
|
|
|
int action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players); |
|
if (players > 1) |
|
{ |
|
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2); |
|
if (virtual_to_play_batch[i] == 1) |
|
virtual_to_play_batch[i] = 2; |
|
else |
|
virtual_to_play_batch[i] = 1; |
|
} |
|
|
|
node->best_action = action; |
|
|
|
node = node->get_child(action); |
|
last_action = action; |
|
results.search_paths[i].push_back(node); |
|
search_len += 1; |
|
} |
|
|
|
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2]; |
|
|
|
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index); |
|
results.latent_state_index_in_batch.push_back(parent->batch_index); |
|
|
|
results.last_actions.push_back(last_action); |
|
results.search_lens.push_back(search_len); |
|
results.nodes.push_back(node); |
|
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]); |
|
} |
|
} |
|
|
|
} |