|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from ding.model.common import ReparameterizationHead |
|
from ding.torch_utils import MLP, ResBlock |
|
from ding.utils import MODEL_REGISTRY, SequenceType |
|
|
|
from .common import EZNetworkOutput, RepresentationNetwork |
|
from .efficientzero_model import DynamicsNetwork |
|
from .utils import renormalize, get_params_mean |
|
|
|
|
|
|
|
@MODEL_REGISTRY.register('SampledEfficientZeroModel') |
|
class SampledEfficientZeroModel(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
observation_shape: SequenceType = (12, 96, 96), |
|
action_space_size: int = 6, |
|
num_res_blocks: int = 1, |
|
num_channels: int = 64, |
|
lstm_hidden_size: int = 512, |
|
reward_head_channels: int = 16, |
|
value_head_channels: int = 16, |
|
policy_head_channels: int = 16, |
|
fc_reward_layers: SequenceType = [32], |
|
fc_value_layers: SequenceType = [32], |
|
fc_policy_layers: SequenceType = [32], |
|
reward_support_size: int = 601, |
|
value_support_size: int = 601, |
|
proj_hid: int = 1024, |
|
proj_out: int = 1024, |
|
pred_hid: int = 512, |
|
pred_out: int = 1024, |
|
self_supervised_learning_loss: bool = True, |
|
categorical_distribution: bool = True, |
|
activation: Optional[nn.Module] = nn.ReLU(inplace=True), |
|
last_linear_layer_init_zero: bool = True, |
|
state_norm: bool = False, |
|
downsample: bool = False, |
|
|
|
|
|
|
|
continuous_action_space: bool = False, |
|
num_of_sampled_actions: int = 6, |
|
sigma_type='conditioned', |
|
fixed_sigma_value: float = 0.3, |
|
bound_type: str = None, |
|
norm_type: str = 'BN', |
|
discrete_action_encoding_type: str = 'one_hot', |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Overview: |
|
The definition of the network model of Sampled EfficientZero, which is a generalization version for 2D image obs. |
|
The networks are mainly built on convolution residual blocks and fully connected layers. |
|
Sampled EfficientZero model consists of a representation network, a dynamics network and a prediction network. |
|
The representation network is an MLP network which maps the raw observation to a latent state. |
|
The dynamics network is an MLP+LSTM network which predicts the next latent state, reward_hidden_state and value_prefix given the current latent state and action. |
|
The prediction network is an MLP network which predicts the value and policy given the current latent state. |
|
Arguments: |
|
- observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[12, 96, 96] for Atari. |
|
- action_space_size: (:obj:`int`): Action space size, which is an integer number. For discrete action space, it is the num of discrete actions, \ |
|
e.g. 4 for Lunarlander. For continuous action space, it is the dimension of the continuous action, e.g. 4 for bipedalwalker. |
|
- num_res_blocks (:obj:`int`): The number of res blocks in Sampled EfficientZero model. |
|
- num_channels (:obj:`int`): The channels of hidden states. |
|
- lstm_hidden_size (:obj:`int`): dim of lstm hidden state in dynamics network. |
|
- reward_head_channels (:obj:`int`): The channels of reward head. |
|
- value_head_channels (:obj:`int`): The channels of value head. |
|
- policy_head_channels (:obj:`int`): The channels of policy head. |
|
- fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head). |
|
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). |
|
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). |
|
- reward_support_size (:obj:`int`): The size of categorical reward output |
|
- value_support_size (:obj:`int`): The size of categorical value output. |
|
- proj_hid (:obj:`int`): The size of projection hidden layer. |
|
- proj_out (:obj:`int`): The size of projection output layer. |
|
- pred_hid (:obj:`int`): The size of prediction hidden layer. |
|
- pred_out (:obj:`int`): The size of prediction output layer. |
|
- self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in model, default set it to False. |
|
- categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution \ |
|
for value, reward/value_prefix. |
|
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ |
|
operation to speedup, e.g. ReLU(inplace=True). |
|
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \ |
|
value/policy mlp, default sets it to True. |
|
- state_norm (:obj:`bool`): Whether to use normalization for hidden states, default sets it to True. |
|
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \ |
|
defaults to True. This option is often used in video games like Atari. In board games like go, \ |
|
we don't need this module. |
|
# ============================================================== |
|
# specific sampled related config |
|
# ============================================================== |
|
- continuous_action_space (:obj:`bool`): The type of action space. default set it to False. |
|
- num_of_sampled_actions (:obj:`int`): the number of sampled actions, i.e. the K in original Sampled MuZero paper. |
|
# Please see ``ReparameterizationHead`` in ``ding.model.common.head`` for more details about the following arguments. |
|
- sigma_type (:obj:`str`): the type of sigma in policy head of prediction network, options={'conditioned', 'fixed'}. |
|
- fixed_sigma_value (:obj:`float`): the fixed sigma value in policy head of prediction network, |
|
- bound_type (:obj:`str`): The type of bound in networks, default set it to None. |
|
- norm_type (:obj:`str`): The type of normalization in networks, default sets it to 'BN'. |
|
- discrete_action_encoding_type (:obj:`str`): The type of encoding for discrete action. default sets it to 'one_hot'. options = {'one_hot', 'not_one_hot'} |
|
""" |
|
super(SampledEfficientZeroModel, self).__init__() |
|
if isinstance(observation_shape, int) or len(observation_shape) == 1: |
|
|
|
|
|
observation_shape = [1, observation_shape, 1] |
|
if not categorical_distribution: |
|
self.reward_support_size = 1 |
|
self.value_support_size = 1 |
|
else: |
|
self.reward_support_size = reward_support_size |
|
self.value_support_size = value_support_size |
|
|
|
self.continuous_action_space = continuous_action_space |
|
self.action_space_size = action_space_size |
|
|
|
|
|
self.action_space_dim = action_space_size if self.continuous_action_space else 1 |
|
assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type |
|
self.discrete_action_encoding_type = discrete_action_encoding_type |
|
if self.continuous_action_space: |
|
self.action_encoding_dim = action_space_size |
|
else: |
|
if self.discrete_action_encoding_type == 'one_hot': |
|
self.action_encoding_dim = action_space_size |
|
elif self.discrete_action_encoding_type == 'not_one_hot': |
|
self.action_encoding_dim = 1 |
|
|
|
self.lstm_hidden_size = lstm_hidden_size |
|
self.proj_hid = proj_hid |
|
self.proj_out = proj_out |
|
self.pred_hid = pred_hid |
|
self.pred_out = pred_out |
|
|
|
self.last_linear_layer_init_zero = last_linear_layer_init_zero |
|
self.state_norm = state_norm |
|
self.downsample = downsample |
|
self.self_supervised_learning_loss = self_supervised_learning_loss |
|
|
|
self.sigma_type = sigma_type |
|
self.fixed_sigma_value = fixed_sigma_value |
|
self.bound_type = bound_type |
|
self.norm_type = norm_type |
|
self.num_of_sampled_actions = num_of_sampled_actions |
|
|
|
flatten_output_size_for_reward_head = ( |
|
(reward_head_channels * math.ceil(observation_shape[1] / 16) * |
|
math.ceil(observation_shape[2] / 16)) if downsample else |
|
(reward_head_channels * observation_shape[1] * observation_shape[2]) |
|
) |
|
flatten_output_size_for_value_head = ( |
|
(value_head_channels * math.ceil(observation_shape[1] / 16) * |
|
math.ceil(observation_shape[2] / 16)) if downsample else |
|
(value_head_channels * observation_shape[1] * observation_shape[2]) |
|
) |
|
flatten_output_size_for_policy_head = ( |
|
(policy_head_channels * math.ceil(observation_shape[1] / 16) * |
|
math.ceil(observation_shape[2] / 16)) if downsample else |
|
(policy_head_channels * observation_shape[1] * observation_shape[2]) |
|
) |
|
|
|
self.representation_network = RepresentationNetwork( |
|
observation_shape, |
|
num_res_blocks, |
|
num_channels, |
|
downsample, |
|
norm_type=self.norm_type, |
|
) |
|
|
|
self.dynamics_network = DynamicsNetwork( |
|
observation_shape, |
|
self.action_encoding_dim, |
|
num_res_blocks, |
|
num_channels + self.action_encoding_dim, |
|
reward_head_channels, |
|
fc_reward_layers, |
|
self.reward_support_size, |
|
flatten_output_size_for_reward_head, |
|
downsample, |
|
lstm_hidden_size=self.lstm_hidden_size, |
|
last_linear_layer_init_zero=self.last_linear_layer_init_zero, |
|
activation=activation, |
|
norm_type=norm_type |
|
) |
|
|
|
self.prediction_network = PredictionNetwork( |
|
observation_shape, |
|
self.continuous_action_space, |
|
action_space_size, |
|
num_res_blocks, |
|
num_channels, |
|
value_head_channels, |
|
policy_head_channels, |
|
fc_value_layers, |
|
fc_policy_layers, |
|
self.value_support_size, |
|
flatten_output_size_for_value_head, |
|
flatten_output_size_for_policy_head, |
|
downsample, |
|
last_linear_layer_init_zero=self.last_linear_layer_init_zero, |
|
sigma_type=self.sigma_type, |
|
fixed_sigma_value=self.fixed_sigma_value, |
|
bound_type=self.bound_type, |
|
norm_type=self.norm_type, |
|
) |
|
|
|
if self.self_supervised_learning_loss: |
|
|
|
if self.downsample: |
|
|
|
|
|
|
|
|
|
self.projection_input_dim = num_channels * math.ceil(observation_shape[1] / 16 |
|
) * math.ceil(observation_shape[2] / 16) |
|
else: |
|
self.projection_input_dim = num_channels * observation_shape[1] * observation_shape[2] |
|
|
|
self.projection = nn.Sequential( |
|
nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, |
|
nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, |
|
nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out) |
|
) |
|
self.prediction_head = nn.Sequential( |
|
nn.Linear(self.proj_out, self.pred_hid), |
|
nn.BatchNorm1d(self.pred_hid), |
|
activation, |
|
nn.Linear(self.pred_hid, self.pred_out), |
|
) |
|
|
|
def initial_inference(self, obs: torch.Tensor) -> EZNetworkOutput: |
|
""" |
|
Overview: |
|
Initial inference of SampledEfficientZero model, which is the first step of the SampledEfficientZero model. |
|
To perform the initial inference, we first use the representation network to obtain the "latent_state" of the observation. |
|
Then we use the prediction network to predict the "value" and "policy_logits" of the "latent_state", and |
|
also prepare the zeros-like ``reward_hidden_state`` for the next step of the SampledEfficientZero model. |
|
Arguments: |
|
- obs (:obj:`torch.Tensor`): The 2D image observation data. |
|
Returns (EZNetworkOutput): |
|
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. |
|
- value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. \ |
|
In initial inference, we set it to zero vector. |
|
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The hidden state of LSTM about reward. In initial inference, \ |
|
we set it to the zeros-like hidden state (H and C). |
|
Shapes: |
|
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size. |
|
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. |
|
- value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. |
|
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size. |
|
""" |
|
batch_size = obs.size(0) |
|
latent_state = self._representation(obs) |
|
policy_logits, value = self._prediction(latent_state) |
|
|
|
|
|
reward_hidden_state = ( |
|
torch.zeros(1, batch_size, |
|
self.lstm_hidden_size).to(obs.device), torch.zeros(1, batch_size, |
|
self.lstm_hidden_size).to(obs.device) |
|
) |
|
return EZNetworkOutput(value, [0. for _ in range(batch_size)], policy_logits, latent_state, reward_hidden_state) |
|
|
|
def recurrent_inference( |
|
self, latent_state: torch.Tensor, reward_hidden_state: torch.Tensor, action: torch.Tensor |
|
) -> EZNetworkOutput: |
|
""" |
|
Overview: |
|
Recurrent inference of Sampled EfficientZero model, which is the rollout step of the Sampled EfficientZero model. |
|
To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``, |
|
``reward_hidden_state``, ``value_prefix`` by the given current ``latent_state`` and ``action``. |
|
We then use the prediction network to predict the ``value`` and ``policy_logits``. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. |
|
- action (:obj:`torch.Tensor`): The predicted action to rollout. |
|
Returns (EZNetworkOutput): |
|
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. |
|
- value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. |
|
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- next_latent_state (:obj:`torch.Tensor`): The predicted next latent state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. |
|
Shapes: |
|
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size. |
|
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. |
|
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. |
|
- value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. |
|
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size. |
|
""" |
|
next_latent_state, reward_hidden_state, value_prefix = self._dynamics(latent_state, reward_hidden_state, action) |
|
policy_logits, value = self._prediction(next_latent_state) |
|
return EZNetworkOutput(value, value_prefix, policy_logits, next_latent_state, reward_hidden_state) |
|
|
|
def _representation(self, observation: torch.Tensor) -> Tuple[torch.Tensor]: |
|
""" |
|
Overview: |
|
Use the representation network to encode the observations into latent state. |
|
Arguments: |
|
- obs (:obj:`torch.Tensor`): The 2D image observation data. |
|
Returns: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
Shapes: |
|
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size. |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
""" |
|
latent_state = self.representation_network(observation) |
|
if self.state_norm: |
|
latent_state = renormalize(latent_state) |
|
return latent_state |
|
|
|
def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Overview: |
|
use the prediction network to predict the "value" and "policy_logits" of the "latent_state". |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input obs. |
|
Returns: |
|
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. |
|
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. |
|
Shapes: |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. |
|
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. |
|
""" |
|
return self.prediction_network(latent_state) |
|
|
|
def _dynamics(self, latent_state: torch.Tensor, reward_hidden_state: Tuple[torch.Tensor], |
|
action: torch.Tensor) -> Tuple[torch.Tensor, Tuple[torch.Tensor], torch.Tensor]: |
|
""" |
|
Overview: |
|
Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` |
|
``value_prefix`` and ``next_reward_hidden_state``. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. |
|
- action (:obj:`torch.Tensor`): The predicted action to rollout. |
|
Returns: |
|
- next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep. |
|
- next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. |
|
- value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. |
|
Shapes: |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. |
|
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. |
|
""" |
|
|
|
|
|
if not self.continuous_action_space: |
|
|
|
if self.discrete_action_encoding_type == 'one_hot': |
|
|
|
|
|
if len(action.shape) == 1: |
|
|
|
|
|
action = action.unsqueeze(-1) |
|
|
|
|
|
|
|
action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device) |
|
|
|
action = action.long() |
|
action_one_hot.scatter_(1, action, 1) |
|
|
|
action_encoding_tmp = action_one_hot.unsqueeze(-1).unsqueeze(-1) |
|
action_encoding = action_encoding_tmp.expand( |
|
latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3] |
|
) |
|
|
|
elif self.discrete_action_encoding_type == 'not_one_hot': |
|
|
|
|
|
if len(action.shape) == 2: |
|
|
|
|
|
action = action.unsqueeze(-1).unsqueeze(-1) |
|
elif len(action.shape) == 1: |
|
|
|
|
|
action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) |
|
|
|
action_encoding = action.expand( |
|
latent_state.shape[0], 1, latent_state.shape[2], latent_state.shape[3] |
|
) / self.action_space_size |
|
else: |
|
|
|
if len(action.shape) == 1: |
|
|
|
|
|
action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) |
|
elif len(action.shape) == 2: |
|
|
|
|
|
action = action.unsqueeze(-1).unsqueeze(-1) |
|
elif len(action.shape) == 3: |
|
|
|
|
|
action = action.unsqueeze(-1) |
|
|
|
action_encoding_tmp = action |
|
action_encoding = action_encoding_tmp.expand( |
|
latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3] |
|
) |
|
|
|
action_encoding = action_encoding.to(latent_state.device).float() |
|
|
|
|
|
state_action_encoding = torch.cat((latent_state, action_encoding), dim=1) |
|
next_latent_state, next_reward_hidden_state, value_prefix = self.dynamics_network( |
|
state_action_encoding, reward_hidden_state |
|
) |
|
if not self.state_norm: |
|
return next_latent_state, next_reward_hidden_state, value_prefix |
|
else: |
|
next_latent_state_normalized = renormalize(next_latent_state) |
|
return next_latent_state_normalized, next_reward_hidden_state, value_prefix |
|
|
|
def project(self, latent_state: torch.Tensor, with_grad=True) -> torch.Tensor: |
|
""" |
|
Overview: |
|
Project the latent state to a lower dimension to calculate the self-supervised loss, which is proposed in EfficientZero. |
|
For more details, please refer to paper ``Exploring Simple Siamese Representation Learning``. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- with_grad (:obj:`bool`): Whether to calculate gradient for the projection result. |
|
Returns: |
|
- proj (:obj:`torch.Tensor`): The result embedding vector of projection operation. |
|
Shapes: |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ |
|
latent state, W_ is the width of latent state. |
|
- proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size. |
|
|
|
Examples: |
|
>>> latent_state = torch.randn(256, 64, 6, 6) |
|
>>> output = self.project(latent_state) |
|
>>> output.shape # (256, 1024) |
|
|
|
.. note:: |
|
for Atari: |
|
observation_shape = (12, 96, 96), # original shape is (3,96,96), frame_stack_num=4 |
|
if downsample is True, latent_state.shape: (batch_size, num_channel, obs_shape[1] / 16, obs_shape[2] / 16) |
|
i.e., (256, 64, 96 / 16, 96 / 16) = (256, 64, 6, 6) |
|
latent_state reshape: (256, 64, 6, 6) -> (256,64*6*6) = (256, 2304) |
|
# self.projection_input_dim = 64*6*6 = 2304 |
|
# self.projection_output_dim = 1024 |
|
""" |
|
latent_state = latent_state.reshape(latent_state.shape[0], -1) |
|
|
|
proj = self.projection(latent_state) |
|
|
|
if with_grad: |
|
|
|
return self.prediction_head(proj) |
|
else: |
|
return proj.detach() |
|
|
|
def get_params_mean(self): |
|
return get_params_mean(self) |
|
|
|
|
|
class PredictionNetwork(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
observation_shape: SequenceType, |
|
continuous_action_space, |
|
action_space_size, |
|
num_res_blocks, |
|
num_channels, |
|
value_head_channels, |
|
policy_head_channels, |
|
fc_value_layers, |
|
fc_policy_layers, |
|
output_support_size, |
|
flatten_output_size_for_value_head, |
|
flatten_output_size_for_policy_head, |
|
downsample: bool = False, |
|
last_linear_layer_init_zero: bool = True, |
|
activation: Optional[nn.Module] = nn.ReLU(inplace=True), |
|
|
|
|
|
|
|
sigma_type='conditioned', |
|
fixed_sigma_value: float = 0.3, |
|
bound_type: str = None, |
|
norm_type: str = 'BN', |
|
): |
|
""" |
|
Overview: |
|
The definition of policy and value prediction network, which is used to predict value and policy by the |
|
given latent state. |
|
The networks are mainly build on res_conv_blocks and fully connected layers. |
|
Arguments: |
|
- observation_shape (:obj:`SequenceType`): The shape of observation space, e.g. (C, H, W) for image. |
|
- continuous_action_space (:obj:`bool`): The type of action space. Default sets it to False. |
|
- action_space_size: (:obj:`int`): Action space size, usually an integer number. For discrete action \ |
|
space, it is the number of discrete actions. For continuous action space, it is the dimension of \ |
|
continuous action. |
|
- num_res_blocks (:obj:`int`): number of res blocks in model. |
|
- num_channels (:obj:`int`): channels of hidden states. |
|
- value_head_channels (:obj:`int`): channels of value head. |
|
- policy_head_channels (:obj:`int`): channels of policy head. |
|
- fc_value_layers (:obj:`SequenceType`): hidden layers of the value prediction head (MLP head). |
|
- fc_policy_layers (:obj:`SequenceType`): hidden layers of the policy prediction head (MLP head). |
|
- output_support_size (:obj:`int`): dim of value output. |
|
- flatten_output_size_for_value_head (:obj:`int`): dim of flatten hidden states. |
|
- flatten_output_size_for_policy_head (:obj:`int`): dim of flatten hidden states. |
|
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``. |
|
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of value/policy mlp, default sets it to True. |
|
# ============================================================== |
|
# specific sampled related config |
|
# ============================================================== |
|
# see ``ReparameterizationHead`` in ``ding.model.common.head`` for more details about the following arguments. |
|
- sigma_type (:obj:`str`): the type of sigma in policy head of prediction network, options={'conditioned', 'fixed'}. |
|
- fixed_sigma_value (:obj:`float`): the fixed sigma value in policy head of prediction network, |
|
- bound_type (:obj:`str`): The type of bound in networks. Default sets it to None. |
|
- norm_type (:obj:`str`): The type of normalization in networks. Default sets it to 'BN'. |
|
""" |
|
super().__init__() |
|
self.continuous_action_space = continuous_action_space |
|
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head |
|
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head |
|
self.norm_type = norm_type |
|
self.sigma_type = sigma_type |
|
self.fixed_sigma_value = fixed_sigma_value |
|
self.bound_type = bound_type |
|
self.activation = activation |
|
|
|
self.resblocks = nn.ModuleList( |
|
[ |
|
ResBlock( |
|
in_channels=num_channels, |
|
activation=activation, |
|
norm_type='BN', |
|
res_type='basic', |
|
bias=False |
|
) for _ in range(num_res_blocks) |
|
] |
|
) |
|
|
|
self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1) |
|
self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1) |
|
|
|
if norm_type == 'BN': |
|
self.norm_value = nn.BatchNorm2d(value_head_channels) |
|
self.norm_policy = nn.BatchNorm2d(policy_head_channels) |
|
elif norm_type == 'LN': |
|
if downsample: |
|
self.norm_value = nn.LayerNorm( |
|
[value_head_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)]) |
|
self.norm_policy = nn.LayerNorm([policy_head_channels, math.ceil(observation_shape[-2] / 16), |
|
math.ceil(observation_shape[-1] / 16)]) |
|
else: |
|
self.norm_value = nn.LayerNorm([value_head_channels, observation_shape[-2], observation_shape[-1]]) |
|
self.norm_policy = nn.LayerNorm([policy_head_channels, observation_shape[-2], observation_shape[-1]]) |
|
|
|
self.fc_value_head = MLP( |
|
in_channels=self.flatten_output_size_for_value_head, |
|
hidden_channels=fc_value_layers[0], |
|
out_channels=output_support_size, |
|
layer_num=len(fc_value_layers) + 1, |
|
activation=activation, |
|
norm_type=self.norm_type, |
|
output_activation=False, |
|
output_norm=False, |
|
|
|
last_linear_layer_init_zero=last_linear_layer_init_zero |
|
) |
|
|
|
|
|
if self.continuous_action_space: |
|
self.fc_policy_head = ReparameterizationHead( |
|
input_size=self.flatten_output_size_for_policy_head, |
|
output_size=action_space_size, |
|
layer_num=len(fc_policy_layers) + 1, |
|
sigma_type=self.sigma_type, |
|
fixed_sigma_value=self.fixed_sigma_value, |
|
activation=nn.ReLU(), |
|
norm_type=None, |
|
bound_type=self.bound_type |
|
) |
|
else: |
|
self.fc_policy_head = MLP( |
|
in_channels=self.flatten_output_size_for_policy_head, |
|
hidden_channels=fc_policy_layers[0], |
|
out_channels=action_space_size, |
|
layer_num=len(fc_policy_layers) + 1, |
|
activation=activation, |
|
norm_type=self.norm_type, |
|
output_activation=False, |
|
output_norm=False, |
|
|
|
last_linear_layer_init_zero=last_linear_layer_init_zero |
|
) |
|
|
|
def forward(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Overview: |
|
Forward computation of the prediction network. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): input tensor with shape (B, in_channels). |
|
Returns: |
|
- policy (:obj:`torch.Tensor`): policy tensor. If action space is discrete, shape is (B, action_space_size). |
|
If action space is continuous, shape is (B, action_space_size * 2). |
|
- value (:obj:`torch.Tensor`): value tensor with shape (B, output_support_size). |
|
""" |
|
|
|
for res_block in self.resblocks: |
|
latent_state = res_block(latent_state) |
|
value = self.conv1x1_value(latent_state) |
|
value = self.norm_value(value) |
|
value = self.activation(value) |
|
|
|
policy = self.conv1x1_policy(latent_state) |
|
policy = self.norm_policy(policy) |
|
policy = self.activation(policy) |
|
|
|
value = value.reshape(-1, self.flatten_output_size_for_value_head) |
|
policy = policy.reshape(-1, self.flatten_output_size_for_policy_head) |
|
value = self.fc_value_head(value) |
|
|
|
|
|
policy = self.fc_policy_head(policy) |
|
|
|
if self.continuous_action_space: |
|
policy = torch.cat([policy['mu'], policy['sigma']], dim=-1) |
|
|
|
return policy, value |
|
|