gomoku / LightZero /zoo /game_2048 /envs /game_2048_env.py
zjowowen's picture
init space
079c32c
raw
history blame
37.4 kB
import copy
import logging
import os
import sys
from typing import List
import gymnasium as gym
import imageio
import matplotlib.font_manager as fm
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from ding.envs import BaseEnvTimestep
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from easydict import EasyDict
from gymnasium import spaces
from gymnasium.utils import seeding
@ENV_REGISTRY.register('game_2048')
class Game2048Env(gym.Env):
"""
Overview:
The Game2048Env is a gym environment implementation of the 2048 game. The goal of the game is to slide numbered tiles
on a grid to combine them and create a tile with the number 2048 (or larger). The environment provides an interface to interact with
the game and receive observations, rewards, and game status information.
Interfaces:
- reset(init_board=None, add_random_tile_flag=True):
Resets the game board and starts a new episode. It returns the initial observation of the game.
- step(action):
Advances the game by one step based on the provided action. It returns the new observation, reward, game status,
and additional information.
- render(mode='human'):
Renders the current state of the game for visualization purposes.
MDP Definition:
- Observation Space:
The observation space is a 4x4 grid representing the game board. Each cell in the grid can contain a number from
0 to 2048. The observation can be in different formats based on the 'obs_type' parameter in the environment configuration.
- If 'obs_type' is set to 'encode_observation' (default):
The observation is a 3D numpy array of shape (4, 4, 16). Each cell in the array is represented as a one-hot vector
encoding the value of the tile in that cell. The one-hot vector has a length of 16, representing the possible tile
values from 0 to 2048. The first element in the one-hot vector corresponds to an empty cell (0 value).
- If 'obs_type' is set to 'dict_encoded_board':
The observation is a dictionary with the following keys:
- 'observation': A 3D numpy array representing the game board as described above.
- 'action_mask': A binary mask representing the legal actions that can be taken in the current state.
- 'to_play': A placeholder value (-1) indicating the current player (not applicable in this game).
- 'chance': A placeholder value representing the chance outcome (not applicable in this game).
- If 'obs_type' is set to 'raw_board':
The observation is the raw game board as a 2D numpy array of shape (4, 4).
- Action Space:
The action space is a discrete space with 4 possible actions:
- 0: Move Up
- 1: Move Right
- 2: Move Down
- 3: Move Left
- Reward:
The reward depends on the 'reward_type' parameter in the environment configuration.
- If 'reward_type' is set to 'raw':
The reward is a floating-point number representing the immediate reward obtained from the last action.
- If 'reward_type' is set to 'merged_tiles_plus_log_max_tile_num':
The reward is a floating-point number representing the number of merged tiles in the current step.
If the maximum tile number on the board after the step is greater than the previous maximum tile number,
the reward is further adjusted by adding the logarithm of the new maximum tile number multiplied by 0.1.
The reward is calculated as follows: reward = num_of_merged_tiles + (log2(new_max_tile_num) * 0.1)
If the new maximum tile number is the same as the previous maximum tile number, the reward does not
include the second term. Note: This reward type requires 'reward_normalize' to be set to False.
- Done:
The game ends when one of the following conditions is met:
- The maximum tile number (configured by 'max_tile') is reached.
- There are no legal moves left.
- The number of steps in the episode exceeds the maximum episode steps (configured by 'max_episode_steps').
- Additional Information:
The 'info' dictionary returned by the 'step' method contains additional information about the current state.
The following keys are included in the dictionary:
- 'raw_reward': The raw reward obtained from the last action.
- 'current_max_tile_num': The current maximum tile number on the board.
- Rendering:
The render method provides a way to visually represent the current state of the game. It offers four distinct rendering modes:
When set to None, the game state is not rendered.
In 'state_realtime_mode', the game state is illustrated in a text-based format directly in the console.
The 'image_realtime_mode' displays the game as an RGB image in real-time.
With 'image_savefile_mode', the game is rendered as an RGB image but not displayed in real-time. Instead, the image is saved to a designated file.
Please note that the default rendering mode is set to None.
"""
# The default_config for game 2048 env.
config = dict(
# (str) The name of the environment registered in the environment registry.
env_name="game_2048",
# (str) The render mode. Options are 'None', 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
# If None, then the game will not be rendered.
render_mode=None,
# (str) The format in which to save the replay. 'gif' is a popular choice.
replay_format='gif',
# (str) A suffix for the replay file name to distinguish it from other files.
replay_name_suffix='eval',
# (str or None) The directory in which to save the replay file. If None, the file is saved in the current directory.
replay_path=None,
# (bool) Whether to scale the actions. If True, actions are divided by the action space size.
act_scale=True,
# (bool) Whether to use the 'channel last' format for the observation space.
# If False, 'channel first' format is used.
channel_last=True,
# (str) The type of observation to use. Options are 'raw_board', 'raw_encoded_board', and 'dict_encoded_board'.
obs_type='dict_encoded_board',
# (bool) Whether to normalize rewards. If True, rewards are divided by the maximum possible reward.
reward_normalize=False,
# (float) The factor to scale rewards by when reward normalization is used.
reward_norm_scale=100,
# (str) The type of reward to use. 'raw' means the raw game score. 'merged_tiles_plus_log_max_tile_num' is an alternative.
reward_type='raw',
# (int) The maximum tile number in the game. A game is won when this tile appears. 2**11=2048, 2**16=65536
max_tile=int(2 ** 16),
# (int) The number of steps to delay rewards by. If > 0, the agent only receives a reward every this many steps.
delay_reward_step=0,
# (float) The probability that a random agent is used instead of the learning agent.
prob_random_agent=0.,
# (int) The maximum number of steps in an episode.
max_episode_steps=int(1e6),
# (bool) Whether to collect data during the game.
is_collect=True,
# (bool) Whether to ignore legal actions. If True, the agent can take any action, even if it's not legal.
ignore_legal_actions=True,
# (bool) Whether to flatten the observation space. If True, the observation space is a 1D array instead of a 2D grid.
need_flatten=False,
# (int) The number of possible tiles that can appear after each move.
num_of_possible_chance_tile=2,
# (numpy array) The possible tiles that can appear after each move.
possible_tiles=np.array([2, 4]),
# (numpy array) The probabilities corresponding to each possible tile.
tile_probabilities=np.array([0.9, 0.1]),
)
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
def __init__(self, cfg: dict) -> None:
self._cfg = cfg
self._init_flag = False
self._env_name = cfg.env_name
self.replay_format = cfg.replay_format
self.replay_name_suffix = cfg.replay_name_suffix
self.replay_path = cfg.replay_path
self.render_mode = cfg.render_mode
self.channel_last = cfg.channel_last
self.obs_type = cfg.obs_type
self.reward_type = cfg.reward_type
self.reward_normalize = cfg.reward_normalize
self.reward_norm_scale = cfg.reward_norm_scale
assert self.reward_type in ['raw', 'merged_tiles_plus_log_max_tile_num']
assert self.reward_type == 'raw' or (
self.reward_type == 'merged_tiles_plus_log_max_tile_num' and self.reward_normalize is False)
self.max_tile = cfg.max_tile
# Define the maximum tile that will end the game (e.g. 2048). None means no limit.
# This does not affect the state returned.
assert self.max_tile is None or isinstance(self.max_tile, int)
self.max_episode_steps = cfg.max_episode_steps
self.is_collect = cfg.is_collect
self.ignore_legal_actions = cfg.ignore_legal_actions
self.need_flatten = cfg.need_flatten
self.chance = 0
self.chance_space_size = 16 # 32 for 2 and 4, 16 for 2
self.max_tile_num = 0
self.size = 4
self.w = self.size
self.h = self.size
self.squares = self.size * self.size
self.episode_return = 0
# Members for gym implementation:
self._action_space = spaces.Discrete(4)
self._observation_space = spaces.Box(0, 1, (self.w, self.h, self.squares), dtype=int)
self._reward_range = (0., self.max_tile)
# for render
self.grid_size = 70
# Initialise the random seed of the gym environment.
self.seed()
self.frames = []
self.num_of_possible_chance_tile = cfg.num_of_possible_chance_tile
self.possible_tiles = cfg.possible_tiles
self.tile_probabilities = cfg.tile_probabilities
if self.num_of_possible_chance_tile > 2:
self.possible_tiles = np.array([2 ** (i + 1) for i in range(self.num_of_possible_chance_tile)])
self.tile_probabilities = np.array(
[1 / self.num_of_possible_chance_tile for _ in range(self.num_of_possible_chance_tile)])
assert self.possible_tiles.shape[0] == self.tile_probabilities.shape[0]
assert np.sum(self.tile_probabilities) == 1
def reset(self, init_board=None, add_random_tile_flag=True):
"""Reset the game board-matrix and add 2 tiles."""
self.episode_length = 0
self.add_random_tile_flag = add_random_tile_flag
if init_board is not None:
self.board = copy.deepcopy(init_board)
else:
self.board = np.zeros((self.h, self.w), np.int32)
# Add two tiles at the start of the game
for _ in range(2):
if self.num_of_possible_chance_tile > 2:
self.add_random_tile(self.possible_tiles, self.tile_probabilities)
elif self.num_of_possible_chance_tile == 2:
self.add_random_2_4_tile()
self.episode_return = 0
self._final_eval_reward = 0.0
self.should_done = False
# Create a mask for legal actions
action_mask = np.zeros(4, 'int8')
action_mask[self.legal_actions] = 1
# Encode the board, ensure correct datatype and shape
observation = encode_board(self.board).astype(np.float32)
assert observation.shape == (4, 4, 16)
# Reshape or transpose the observation as per the requirement
if not self.channel_last:
# move channel dim to fist axis
# (W, H, C) -> (C, W, H)
# e.g. (4, 4, 16) -> (16, 4, 4)
observation = np.transpose(observation, [2, 0, 1])
if self.need_flatten:
observation = observation.reshape(-1)
# Based on the observation type, create the appropriate observation object
if self.obs_type == 'dict_encoded_board':
observation = {
'observation': observation,
'action_mask': action_mask,
'to_play': -1,
'chance': self.chance
}
elif self.obs_type == 'raw_board':
observation = self.board
elif self.obs_type == 'raw_encoded_board':
observation = observation
else:
raise NotImplementedError
# Render the beginning state of the game.
if self.render_mode is not None:
self.render(self.render_mode)
return observation
def step(self, action):
"""
Overview:
Perform one step of the game. This involves making a move, adding a new tile, and updating the game state.
New tile could be added randomly or from the tile probabilities.
The rewards are calculated based on the game configuration ('merged_tiles_plus_log_max_tile_num' or 'raw').
The observations are also returned based on the game configuration ('raw_board', 'raw_encoded_board' or 'dict_encoded_board').
Arguments:
- action (:obj:`int`): The action to be performed.
Returns:
- BaseEnvTimestep: Contains the new state observation, reward, and other game information.
"""
# Increment the total episode length
self.episode_length += 1
# Check if the action is legal, otherwise choose a random legal action
if action not in self.legal_actions:
logging.warning(
f"Illegal action: {action}. Legal actions: {self.legal_actions}. "
"Choosing a random action from legal actions."
)
action = np.random.choice(self.legal_actions)
# Calculate the reward differently based on the reward type
if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
empty_num1 = len(self.get_empty_location())
raw_reward = float(self.move(action))
if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
empty_num2 = len(self.get_empty_location())
num_of_merged_tiles = float(empty_num2 - empty_num1)
reward_merged_tiles_plus_log_max_tile_num = num_of_merged_tiles
max_tile_num = self.highest()
if max_tile_num > self.max_tile_num:
reward_merged_tiles_plus_log_max_tile_num += np.log2(max_tile_num) * 0.1
self.max_tile_num = max_tile_num
# Update total reward and add new tile
self.episode_return += raw_reward
assert raw_reward <= 2 ** (self.w * self.h)
if self.add_random_tile_flag:
if self.num_of_possible_chance_tile > 2:
self.add_random_tile(self.possible_tiles, self.tile_probabilities)
elif self.num_of_possible_chance_tile == 2:
self.add_random_2_4_tile()
# Check if the game has ended
done = self.is_done()
# Convert rewards to float
if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
reward_merged_tiles_plus_log_max_tile_num = float(reward_merged_tiles_plus_log_max_tile_num)
elif self.reward_type == 'raw':
raw_reward = float(raw_reward)
# End the game if the maximum steps have been reached
if self.episode_length >= self.max_episode_steps:
done = True
# Prepare the game state observation
observation = encode_board(self.board)
observation = observation.astype(np.float32)
assert observation.shape == (4, 4, 16)
if not self.channel_last:
observation = np.transpose(observation, [2, 0, 1])
if self.need_flatten:
observation = observation.reshape(-1)
action_mask = np.zeros(4, 'int8')
action_mask[self.legal_actions] = 1
# Return the observation based on the observation type
if self.obs_type == 'dict_encoded_board':
observation = {'observation': observation, 'action_mask': action_mask, 'to_play': -1, 'chance': self.chance}
elif self.obs_type == 'raw_board':
observation = self.board
elif self.obs_type == 'raw_encoded_board':
observation = observation
else:
raise NotImplementedError
# Normalize the reward if necessary
if self.reward_normalize:
reward_normalize = raw_reward / self.reward_norm_scale
reward = reward_normalize
else:
reward = raw_reward
self._final_eval_reward += raw_reward
# Convert the reward to ndarray
if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
reward = to_ndarray([reward_merged_tiles_plus_log_max_tile_num]).astype(np.float32)
elif self.reward_type == 'raw':
reward = to_ndarray([reward]).astype(np.float32)
# Prepare information to return
info = {"raw_reward": raw_reward, "current_max_tile_num": self.highest()}
# Render the new step.
if self.render_mode is not None:
self.render(self.render_mode)
# If the game has ended, save additional information and the replay if necessary
if done:
info['eval_episode_return'] = self._final_eval_reward
if self.render_mode == 'image_savefile_mode':
self.save_render_output(replay_name_suffix=self.replay_name_suffix, replay_path=self.replay_path,
format=self.replay_format)
return BaseEnvTimestep(observation, reward, done, info)
def move(self, direction, trial=False):
"""
Overview:
Perform one move in the game. The game board can be shifted in one of four directions: up (0), right (1), down (2), or left (3).
This method manages the shifting process and combines similar adjacent elements. It also returns the reward generated from the move.
Arguments:
- direction (:obj:`int`): The direction of the move.
- trial (:obj:`bool`): If true, this move is only simulated and does not change the actual game state.
"""
# TODO(pu): different transition dynamics
# Logging the direction of the move if not a trial
if not trial:
logging.debug(["Up", "Right", "Down", "Left"][int(direction)])
move_reward = 0
# Calculate merge direction of the shift (0 for up/left, 1 for down/right) based on the input direction
merge_direction = 0 if direction in [0, 3] else 1
# Construct a range for extracting row/column into a list
range_x = list(range(self.w))
range_y = list(range(self.h))
# If direction is up or down, process the board column by column
if direction in [0, 2]:
for y in range(self.h):
old_col = [self.board[x, y] for x in range_x]
new_col, reward = self.shift(old_col, merge_direction)
move_reward += reward
if old_col != new_col and not trial: # Update the board if it's not a trial move
for x in range_x:
self.board[x, y] = new_col[x]
# If direction is left or right, process the board row by row
else:
for x in range(self.w):
old_row = [self.board[x, y] for y in range_y]
new_row, reward = self.shift(old_row, merge_direction)
move_reward += reward
if old_row != new_row and not trial: # Update the board if it's not a trial move
for y in range_y:
self.board[x, y] = new_row[y]
return move_reward
def shift(self, row, merge_direction):
"""
Overview:
This method shifts the elements in a given row or column of the 2048 board in a specified direction.
It performs three main operations: removal of zeroes, combination of similar elements, and filling up the
remaining spaces with zeroes. The direction of shift can be either left (0) or right (1).
Arguments:
- row: A list of integers representing a row or a column in the 2048 board.
- merge_direction: An integer that dictates the direction of merge. It can be either 0 or 1.
- 0: The elements in the 'row' will be merged towards left/up.
- 1: The elements in the 'row' will be merged towards right/down.
Returns:
- combined_row: A list of integers of the same length as 'row' after shifting and merging.
- move_reward: The reward gained from combining similar elements in 'row'. It is the sum of all new
combinations.
Note:
This method assumes that the input 'row' is a list of integers and 'merge_direction' is either 0 or 1.
"""
# Remove the zero elements from the row and store it in a new list.
non_zero_row = [i for i in row if i != 0]
# Determine the start, stop, and step values based on the direction of shift.
# If the direction is left (0), we start at the first element and move forwards.
# If the direction is right (1), we start at the last element and move backwards.
start, stop, step = (0, len(non_zero_row), 1) if merge_direction == 0 else (len(non_zero_row) - 1, -1, -1)
# Call the combine function to merge the adjacent, same elements in the row.
combined_row, move_reward = self.combine(non_zero_row, start, stop, step)
if merge_direction == 1:
# If direction is 'right'/'down', reverse the row
combined_row = combined_row[::-1]
# Fill up the remaining spaces in the row with 0, if any.
if merge_direction == 0:
combined_row += [0] * (len(row) - len(combined_row))
elif merge_direction == 1:
combined_row = [0] * (len(row) - len(combined_row)) + combined_row
return combined_row, move_reward
def combine(self, row, start, stop, step):
"""
Overview:
Combine similar adjacent elements in the row, starting from the specified start index,
ending at the stop index, and moving in the direction indicated by the step. The function
also calculates the reward as the sum of all combined elements.
"""
# Initialize the reward for this move as 0.
move_reward = 0
# Initialize the list to store the row after combining same elements.
combined_row = []
# Initialize a flag to indicate whether the next element should be skipped.
skip_next = False
# Iterate over the elements in the row based on the start, stop, and step values.
for i in range(start, stop, step):
# If the next element should be skipped, reset the flag and continue to the next iteration.
if skip_next:
skip_next = False
continue
# If the current element and the next element are the same, combine them.
if i + step != stop and row[i] == row[i + step]:
combined_row.append(row[i] * 2)
move_reward += row[i] * 2
# Set the flag to skip the next element in the next iteration.
skip_next = True
else:
# If the current element and the next element are not the same, just append the current element to the result.
combined_row.append(row[i])
return combined_row, move_reward
@property
def legal_actions(self):
"""
Overview:
Return the legal actions for the current state. A move is considered legal if it changes the state of the board.
"""
if self.ignore_legal_actions:
return [0, 1, 2, 3]
legal_actions = []
# For each direction, simulate a move. If the move changes the board, add the direction to the list of legal actions
for direction in range(4):
# Calculate merge direction of the shift (0 for up/left, 1 for down/right) based on the input direction
merge_direction = 0 if direction in [0, 3] else 1
range_x = list(range(self.w))
range_y = list(range(self.h))
if direction % 2 == 0:
for y in range(self.h):
old_col = [self.board[x, y] for x in range_x]
new_col, _ = self.shift(old_col, merge_direction)
if old_col != new_col:
legal_actions.append(direction)
break # As soon as we know the move is legal, we can stop checking
else:
for x in range(self.w):
old_row = [self.board[x, y] for y in range_y]
new_row, _ = self.shift(old_row, merge_direction)
if old_row != new_row:
legal_actions.append(direction)
break # As soon as we know the move is legal, we can stop checking
return legal_actions
# Implementation of game logic for 2048
def add_random_2_4_tile(self):
"""Add a tile with value 2 or 4 with different probabilities."""
possible_tiles = np.array([2, 4])
tile_probabilities = np.array([0.9, 0.1])
tile_val = self.np_random.choice(possible_tiles, 1, p=tile_probabilities)[0]
empty_location = self.get_empty_location()
if empty_location.shape[0] == 0:
self.should_done = True
return
empty_idx = self.np_random.choice(empty_location.shape[0])
empty = empty_location[empty_idx]
logging.debug("Adding %s at %s", tile_val, (empty[0], empty[1]))
# set the chance outcome
if self.chance_space_size == 16:
self.chance = 4 * empty[0] + empty[1]
elif self.chance_space_size == 32:
if tile_val == 2:
self.chance = 4 * empty[0] + empty[1]
elif tile_val == 4:
self.chance = 16 + 4 * empty[0] + empty[1]
self.board[empty[0], empty[1]] = tile_val
def add_random_tile(self, possible_tiles: np.array = np.array([2, 4]),
tile_probabilities: np.array = np.array([0.9, 0.1])):
"""Add a tile with a value from possible_tiles array according to given probabilities."""
if len(possible_tiles) != len(tile_probabilities):
raise ValueError("Length of possible_tiles and tile_probabilities must be the same")
if np.sum(tile_probabilities) != 1:
raise ValueError("Sum of tile_probabilities must be 1")
tile_val = self.np_random.choice(possible_tiles, 1, p=tile_probabilities)[0]
tile_idx = np.where(possible_tiles == tile_val)[0][0] # get the index of the tile value
empty_location = self.get_empty_location()
if empty_location.shape[0] == 0:
self.should_done = True
return
empty_idx = self.np_random.choice(empty_location.shape[0])
empty = empty_location[empty_idx]
logging.debug("Adding %s at %s", tile_val, (empty[0], empty[1]))
# set the chance outcome
self.chance_space_size = len(possible_tiles) * 16 # assuming a 4x4 board
self.chance = tile_idx * 16 + 4 * empty[0] + empty[1]
self.board[empty[0], empty[1]] = tile_val
def get_empty_location(self):
"""Return a 2d numpy array with the location of empty squares."""
return np.argwhere(self.board == 0)
def highest(self):
"""Report the highest tile on the board."""
return np.max(self.board)
def is_done(self):
"""Has the game ended. Game ends if there is a tile equal to the limit
or there are no legal moves. If there are empty spaces then there
must be legal moves."""
if self.max_tile is not None and self.highest() == self.max_tile:
return True
elif len(self.legal_actions) == 0:
# the agent don't have legal_actions to move, so the episode is done
return True
elif self.should_done:
return True
else:
return False
def get_board(self):
"""Get the whole board-matrix, useful for testing."""
return self.board
def set_board(self, new_board):
"""Set the whole board-matrix, useful for testing."""
self.board = new_board
def seed(self, seed=None, seed1=None):
"""Set the random seed for the gym environment."""
self.np_random, seed = seeding.np_random(seed)
return [seed]
def random_action(self) -> np.ndarray:
random_action = self.action_space.sample()
if isinstance(random_action, np.ndarray):
pass
elif isinstance(random_action, int):
random_action = to_ndarray([random_action], dtype=np.int64)
return random_action
def human_to_action(self):
"""
Overview:
For multiplayer games, ask the user for a legal action
and return the corresponding action number.
Returns:
An integer from the action space.
"""
# print(self.board)
while True:
try:
action = int(
input(
f"Enter the action (0(Up), 1(Right), 2(Down), or 3(Left)) to play: "
)
)
if action in self.legal_actions:
break
else:
print("Wrong input, try again")
except KeyboardInterrupt:
print("exit")
sys.exit(0)
return action
def render(self, mode: str = None):
"""
Overview:
Renders the 2048 game environment.
Arguments:
- mode (:obj:`str`): The rendering mode. Options are None, 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
When set to None, the game state is not rendered.
In 'state_realtime_mode', the game state is illustrated in a text-based format directly in the console.
The 'image_realtime_mode' displays the game as an RGB image in real-time.
With 'image_savefile_mode', the game is rendered as an RGB image but not displayed in real-time. Instead, the image is saved to a designated file.
Please note that the default rendering mode is set to None.
"""
if mode == 'state_realtime_mode':
s = 'Current Return: {}, '.format(self.episode_return)
s += 'Current Highest Tile number: {}\n'.format(self.highest())
npa = np.array(self.board)
grid = npa.reshape((self.size, self.size))
s += "{}\n".format(grid)
print(s)
else:
# In other two modes, draw the board.
grey = (128, 128, 128)
grid_size = self.grid_size
# Render with Pillow
pil_board = Image.new("RGB", (grid_size * 4, grid_size * 4))
draw = ImageDraw.Draw(pil_board)
draw.rectangle([0, 0, 4 * grid_size, 4 * grid_size], grey)
fnt_path = fm.findfont(fm.FontProperties(family='DejaVu Sans'))
fnt = ImageFont.truetype(fnt_path, 30)
for y in range(4):
for x in range(4):
o = self.board[y, x]
if o:
self.draw_tile(draw, x, y, o, fnt)
# Instead of returning the image, we display it using pyplot
if mode == 'image_realtime_mode':
plt.imshow(np.asarray(pil_board))
plt.draw()
# plt.pause(0.001)
elif mode == 'image_savefile_mode':
# Append the frame to frames for gif
self.frames.append(np.asarray(pil_board))
def draw_tile(self, draw, x, y, o, fnt):
grid_size = self.grid_size
white = (255, 255, 255)
tile_colour_map = {
0: (204, 192, 179),
2: (238, 228, 218),
4: (237, 224, 200),
8: (242, 177, 121),
16: (245, 149, 99),
32: (246, 124, 95),
64: (246, 94, 59),
128: (237, 207, 114),
256: (237, 204, 97),
512: (237, 200, 80),
1024: (237, 197, 63),
2048: (237, 194, 46),
4096: (237, 194, 46),
8192: (237, 194, 46),
16384: (237, 194, 46),
}
if o:
draw.rectangle([x * grid_size, y * grid_size, (x + 1) * grid_size, (y + 1) * grid_size],
tile_colour_map[o])
bbox = draw.textbbox((x, y), str(o), font=fnt)
text_x_size, text_y_size = bbox[2] - bbox[0], bbox[3] - bbox[1]
draw.text((x * grid_size + (grid_size - text_x_size) // 2,
y * grid_size + (grid_size - text_y_size) // 2), str(o), font=fnt, fill=white)
def save_render_output(self, replay_name_suffix: str = '', replay_path=None, format='gif'):
# At the end of the episode, save the frames to a gif or mp4 file
if replay_path is None:
filename = f'2048_{replay_name_suffix}.{format}'
else:
if not os.path.exists(replay_path):
os.makedirs(replay_path)
filename = replay_path + f'/2048_{replay_name_suffix}.{format}'
if format == 'gif':
imageio.mimsave(filename, self.frames, 'GIF')
elif format == 'mp4':
imageio.mimsave(filename, self.frames, fps=30, codec='mpeg4')
else:
raise ValueError("Unsupported format: {}".format(format))
logging.info("Saved output to {}".format(filename))
self.frames = []
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_range
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
# when in collect phase, sometimes we need to normalize the reward
# reward_normalize is determined by the config.
cfg.is_collect = True
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
# when in evaluate phase, we don't need to normalize the reward.
cfg.reward_normalize = False
cfg.is_collect = False
return [cfg for _ in range(evaluator_env_num)]
def __repr__(self) -> str:
return "LightZero game 2048 Env."
def encode_board(flat_board, num_of_template_tiles=16):
"""
Overview:
This function converts a [4, 4] raw game board into a [4, 4, num_of_template_tiles] one-hot encoded board.
Arguments:
- flat_board (:obj:`np.ndarray`): The raw game board, expected to be a 2D numpy array.
- num_of_template_tiles (:obj:`int`): The number of unique tiles to consider in the encoding,
default value is 16.
Returns:
- one_hot_board (:obj:`np.ndarray`): The one-hot encoded game board.
"""
# Generate a sequence of powers of 2, corresponding to the unique tile values.
# In the game, tile values are powers of 2. So, each unique tile is represented by 2 raised to some power.
# The first tile is considered as 0 (empty tile).
tile_values = 2 ** np.arange(num_of_template_tiles, dtype=int)
tile_values[0] = 0 # The first tile represents an empty slot, so set its value to 0.
# Create a 3D array from the 2D input board by repeating it along a new axis.
# This creates a 'layered' view of the board, where each layer corresponds to one unique tile value.
layered_board = np.repeat(flat_board[:, :, np.newaxis], num_of_template_tiles, axis=-1)
# Perform the one-hot encoding:
# For each layer of the 'layered_board', mark the positions where the tile value in the 'flat_board'
# matches the corresponding value in 'tile_values'. If a match is found, mark it as 1 (True), else 0 (False).
one_hot_board = (layered_board == tile_values).astype(int)
return one_hot_board