gomoku / DI-engine /ding /entry /application_entry.py
zjowowen's picture
init space
079c32c
raw
history blame
11.8 kB
from typing import Union, Optional, List, Any, Tuple
import os
import pickle
import numpy as np
import torch
from functools import partial
from copy import deepcopy
from ding.config import compile_config, read_config
from ding.worker import SampleSerialCollector, InteractionSerialEvaluator, EpisodeSerialCollector
from ding.envs import create_env_manager, get_vec_env_setting
from ding.policy import create_policy
from ding.torch_utils import to_device, to_ndarray
from ding.utils import set_pkg_seed
from ding.utils.data import offline_data_save_type
from ding.rl_utils import get_nstep_return_data
from ding.utils.data import default_collate
def eval(
input_cfg: Union[str, Tuple[dict, dict]],
seed: int = 0,
env_setting: Optional[List[Any]] = None,
model: Optional[torch.nn.Module] = None,
state_dict: Optional[dict] = None,
load_path: Optional[str] = None,
replay_path: Optional[str] = None,
) -> float:
"""
Overview:
Pure policy evaluation entry. Evaluate mean episode return and save replay videos.
Arguments:
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
``str`` type means config file path. \
``Tuple[dict, dict]`` type means [user_config, create_cfg].
- seed (:obj:`int`): Random seed.
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
``BaseEnv`` subclass, collector env config, and evaluator env config.
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
- state_dict (:obj:`Optional[dict]`): The state_dict of policy or model.
- load_path (:obj:`Optional[str]`): Path to load ckpt.
- replay_path (:obj:`Optional[str]`): Path to save replay.
"""
if isinstance(input_cfg, str):
cfg, create_cfg = read_config(input_cfg)
else:
cfg, create_cfg = deepcopy(input_cfg)
env_fn = None if env_setting is None else env_setting[0]
cfg = compile_config(
cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, save_path='eval_config.py'
)
# Create components: env, policy, evaluator
if env_setting is None:
env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env, collect=False)
else:
env_fn, _, evaluator_env_cfg = env_setting
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg])
evaluator_env.seed(seed, dynamic_seed=False)
if replay_path is None: # argument > config
replay_path = cfg.env.get('replay_path', None)
if replay_path:
evaluator_env.enable_save_replay(replay_path)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
policy = create_policy(cfg.policy, model=model, enable_field=['eval'])
if state_dict is None:
if load_path is None:
load_path = cfg.policy.learn.learner.load_path
state_dict = torch.load(load_path, map_location='cpu')
policy.eval_mode.load_state_dict(state_dict)
evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode)
# Evaluate
_, episode_info = evaluator.eval()
episode_return = np.mean(episode_info['eval_episode_return'])
print('Eval is over! The performance of your RL policy is {}'.format(episode_return))
return episode_return
def collect_demo_data(
input_cfg: Union[str, dict],
seed: int,
collect_count: int,
expert_data_path: Optional[str] = None,
env_setting: Optional[List[Any]] = None,
model: Optional[torch.nn.Module] = None,
state_dict: Optional[dict] = None,
state_dict_path: Optional[str] = None,
) -> None:
r"""
Overview:
Collect demonstration data by the trained policy.
Arguments:
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
``str`` type means config file path. \
``Tuple[dict, dict]`` type means [user_config, create_cfg].
- seed (:obj:`int`): Random seed.
- collect_count (:obj:`int`): The count of collected data.
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
``BaseEnv`` subclass, collector env config, and evaluator env config.
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
- state_dict (:obj:`Optional[dict]`): The state_dict of policy or model.
- state_dict_path (:obj:`Optional[str]`): The path of the state_dict of policy or model.
"""
if isinstance(input_cfg, str):
cfg, create_cfg = read_config(input_cfg)
else:
cfg, create_cfg = deepcopy(input_cfg)
env_fn = None if env_setting is None else env_setting[0]
cfg = compile_config(
cfg,
seed=seed,
env=env_fn,
auto=True,
create_cfg=create_cfg,
save_cfg=True,
save_path='collect_demo_data_config.py'
)
if expert_data_path is None:
expert_data_path = cfg.policy.collect.save_path
# Create components: env, policy, collector
if env_setting is None:
env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False)
else:
env_fn, collector_env_cfg, _ = env_setting
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg])
collector_env.seed(seed)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval'])
# for policies like DQN (in collect_mode has eps-greedy)
# collect_demo_policy = policy.collect_function(
# policy._forward_eval,
# policy._process_transition,
# policy._get_train_sample,
# policy._reset_eval,
# policy._get_attribute,
# policy._set_attribute,
# policy._state_dict_collect,
# policy._load_state_dict_collect,
# )
collect_demo_policy = policy.collect_mode
if state_dict is None:
assert state_dict_path is not None
state_dict = torch.load(state_dict_path, map_location='cpu')
policy.collect_mode.load_state_dict(state_dict)
collector = SampleSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy)
if hasattr(cfg.policy.other, 'eps'):
policy_kwargs = {'eps': 0.}
else:
policy_kwargs = None
# Let's collect some expert demonstrations
exp_data = collector.collect(n_sample=collect_count, policy_kwargs=policy_kwargs)
if cfg.policy.cuda:
exp_data = to_device(exp_data, 'cpu')
# Save data transitions.
offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive'))
print('Collect demo data successfully')
def collect_episodic_demo_data(
input_cfg: Union[str, dict],
seed: int,
collect_count: int,
expert_data_path: str,
env_setting: Optional[List[Any]] = None,
model: Optional[torch.nn.Module] = None,
state_dict: Optional[dict] = None,
state_dict_path: Optional[str] = None,
) -> None:
r"""
Overview:
Collect episodic demonstration data by the trained policy.
Arguments:
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
``str`` type means config file path. \
``Tuple[dict, dict]`` type means [user_config, create_cfg].
- seed (:obj:`int`): Random seed.
- collect_count (:obj:`int`): The count of collected data.
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
``BaseEnv`` subclass, collector env config, and evaluator env config.
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
- state_dict (:obj:`Optional[dict]`): The state_dict of policy or model.
- state_dict_path (:obj:'str') the abs path of the state dict
"""
if isinstance(input_cfg, str):
cfg, create_cfg = read_config(input_cfg)
else:
cfg, create_cfg = deepcopy(input_cfg)
env_fn = None if env_setting is None else env_setting[0]
cfg = compile_config(
cfg,
collector=EpisodeSerialCollector,
seed=seed,
env=env_fn,
auto=True,
create_cfg=create_cfg,
save_cfg=True,
save_path='collect_demo_data_config.py'
)
# Create components: env, policy, collector
if env_setting is None:
env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False)
else:
env_fn, collector_env_cfg, _ = env_setting
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg])
collector_env.seed(seed)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval'])
collect_demo_policy = policy.collect_mode
if state_dict is None:
assert state_dict_path is not None
state_dict = torch.load(state_dict_path, map_location='cpu')
policy.collect_mode.load_state_dict(state_dict)
collector = EpisodeSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy)
if hasattr(cfg.policy.other, 'eps'):
policy_kwargs = {'eps': 0.}
else:
policy_kwargs = None
# Let's collect some expert demonstrations
exp_data = collector.collect(n_episode=collect_count, policy_kwargs=policy_kwargs)
if cfg.policy.cuda:
exp_data = to_device(exp_data, 'cpu')
# Save data transitions.
offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive'))
print('Collect episodic demo data successfully')
def episode_to_transitions(data_path: str, expert_data_path: str, nstep: int) -> None:
r"""
Overview:
Transfer episodic data into nstep transitions.
Arguments:
- data_path (:obj:str): data path that stores the pkl file
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
- nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}.
"""
with open(data_path, 'rb') as f:
_dict = pickle.load(f) # class is list; length is cfg.reward_model.collect_count
post_process_data = []
for i in range(len(_dict)):
data = get_nstep_return_data(_dict[i], nstep)
post_process_data.extend(data)
offline_data_save_type(
post_process_data,
expert_data_path,
)
def episode_to_transitions_filter(data_path: str, expert_data_path: str, nstep: int, min_episode_return: int) -> None:
r"""
Overview:
Transfer episodic data into n-step transitions and only take the episode data whose return is larger than
min_episode_return.
Arguments:
- data_path (:obj:str): data path that stores the pkl file
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
- nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}.
"""
with open(data_path, 'rb') as f:
_dict = pickle.load(f) # class is list; length is cfg.reward_model.collect_count
post_process_data = []
for i in range(len(_dict)):
episode_returns = torch.stack([_dict[i][j]['reward'] for j in range(_dict[i].__len__())], axis=0)
if episode_returns.sum() < min_episode_return:
continue
data = get_nstep_return_data(_dict[i], nstep)
post_process_data.extend(data)
offline_data_save_type(
post_process_data,
expert_data_path,
)