zjowowen's picture
init space
079c32c
raw
history blame
25.7 kB
from typing import Union, List, Dict
from collections import namedtuple
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import list_split, MODEL_REGISTRY, squeeze, SequenceType
from ding.torch_utils.network.diffusion import extract, cosine_beta_schedule, apply_conditioning, \
DiffusionUNet1d, TemporalValue
Sample = namedtuple('Sample', 'trajectories values chains')
def default_sample_fn(model, x, cond, t):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = model.p_mean_variance(
x=x,
cond=cond,
t=t,
)
noise = 0.5 * torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1, ) * (len(x.shape) - 1)))
values = torch.zeros(len(x), device=device)
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, values
def get_guide_output(guide, x, cond, t):
x.requires_grad_()
y = guide(x, cond, t).squeeze(dim=-1)
grad = torch.autograd.grad([y.sum()], [x])[0]
x.detach()
return y, grad
def n_step_guided_p_sample(
model,
x,
cond,
t,
guide,
scale=0.001,
t_stopgrad=0,
n_guide_steps=1,
scale_grad_by_std=True,
):
model_log_variance = extract(model.posterior_log_variance_clipped, t, x.shape)
model_std = torch.exp(0.5 * model_log_variance)
model_var = torch.exp(model_log_variance)
for _ in range(n_guide_steps):
with torch.enable_grad():
y, grad = get_guide_output(guide, x, cond, t)
if scale_grad_by_std:
grad = model_var * grad
grad[t < t_stopgrad] = 0
x = x + scale * grad
x = apply_conditioning(x, cond, model.action_dim)
model_mean, _, model_log_variance = model.p_mean_variance(x=x, cond=cond, t=t)
# no noise when t == 0
noise = torch.randn_like(x)
noise[t == 0] = 0
return model_mean + model_std * noise, y
class GaussianDiffusion(nn.Module):
"""
Overview:
Gaussian diffusion model
Arguments:
- model (:obj:`str`): type of model
- model_cfg (:obj:'dict') config of model
- horizon (:obj:`int`): horizon of trajectory
- obs_dim (:obj:`int`): Dim of the ovservation
- action_dim (:obj:`int`): Dim of the ation
- n_timesteps (:obj:`int`): Number of timesteps
- predict_epsilon (:obj:'bool'): Whether predict epsilon
- loss_discount (:obj:'float'): discount of loss
- clip_denoised (:obj:'bool'): Whether use clip_denoised
- action_weight (:obj:'float'): weight of action
- loss_weights (:obj:'dict'): weight of loss
"""
def __init__(
self,
model: str,
model_cfg: dict,
horizon: int,
obs_dim: Union[int, SequenceType],
action_dim: Union[int, SequenceType],
n_timesteps: int = 1000,
predict_epsilon: bool = True,
loss_discount: float = 1.0,
clip_denoised: bool = False,
action_weight: float = 1.0,
loss_weights: dict = None,
) -> None:
super().__init__()
self.horizon = horizon
self.obs_dim = obs_dim
self.action_dim = action_dim
self.transition_dim = obs_dim + action_dim
if type(model) == str:
model = eval(model)
self.model = model(**model_cfg)
self.predict_epsilon = predict_epsilon
self.clip_denoised = clip_denoised
betas = cosine_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = int(n_timesteps)
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# log calculation clipped because the posterior variance
# is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1', betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer(
'posterior_mean_coef2', (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)
)
self.loss_weights = self.get_loss_weights(action_weight, loss_discount, loss_weights)
def get_loss_weights(self, action_weight: float, discount: float, weights_dict: dict):
"""
Overview:
sets loss coefficients for trajectory
Arguments:
- action_weight (:obj:'float') coefficient on first action loss
- discount (:obj:'float') multiplies t^th timestep of trajectory loss by discount**t
- weights_dict (:obj:'dict') { i: c } multiplies dimension i of observation loss by c
"""
self.action_weight = action_weight
dim_weights = torch.ones(self.transition_dim, dtype=torch.float32)
# set loss coefficients for dimensions of observation
if weights_dict is None:
weights_dict = {}
for ind, w in weights_dict.items():
dim_weights[self.action_dim + ind] *= w
# decay loss with trajectory timestep: discount**t
discounts = discount ** torch.arange(self.horizon, dtype=torch.float)
discounts = discounts / discounts.mean()
loss_weights = torch.einsum('h,t->ht', discounts, dim_weights)
# manually set a0 weight
loss_weights[0, :self.action_dim] = action_weight
return loss_weights
def predict_start_from_noise(self, x_t, t, noise):
"""
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
"""
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
else:
return noise
def q_posterior(self, x_start, x_t, t):
"""
Overview:
give noise and step, compute mean, variance.
Arguments:
x_start (:obj:'tensor') noise trajectory in timestep 0
x_t (:obj:'tuple') noise trajectory in timestep t
t (:obj:'int') timestep of diffusion step
"""
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, cond, t):
x_recon = self.predict_start_from_noise(x, t=t, noise=self.model(x, cond, t))
if self.clip_denoised:
x_recon.clamp_(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample_loop(self, shape, cond, return_chain=False, sample_fn=default_sample_fn, plan_size=1, **sample_kwargs):
device = self.betas.device
batch_size = shape[0]
x = torch.randn(shape, device=device)
x = apply_conditioning(x, cond, self.action_dim)
chain = [x] if return_chain else None
for i in reversed(range(0, self.n_timesteps)):
t = torch.full((batch_size, ), i, device=device, dtype=torch.long)
x, values = sample_fn(self, x, cond, t, **sample_kwargs)
x = apply_conditioning(x, cond, self.action_dim)
if return_chain:
chain.append(x)
values = values.reshape(-1, plan_size, *values.shape[1:])
x = x.reshape(-1, plan_size, *x.shape[1:])
if plan_size > 1:
inds = torch.argsort(values, dim=1, descending=True)
x = x[torch.arange(x.size(0)).unsqueeze(1), inds]
values = values[torch.arange(values.size(0)).unsqueeze(1), inds]
if return_chain:
chain = torch.stack(chain, dim=1)
return Sample(x, values, chain)
@torch.no_grad()
def conditional_sample(self, cond, horizon=None, **sample_kwargs):
"""
conditions : [ (time, state), ... ]
"""
device = self.betas.device
batch_size = len(cond[0])
horizon = horizon or self.horizon
shape = (batch_size, horizon, self.transition_dim)
return self.p_sample_loop(shape, cond, **sample_kwargs)
def q_sample(self, x_start, t, noise=None):
"""
Arguments:
conditions (:obj:'tuple') [ (time, state), ... ] conditions of diffusion
t (:obj:'int') timestep of diffusion
noise (:obj:'tensor.float') timestep's noise of diffusion
"""
if noise is None:
noise = torch.randn_like(x_start)
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, cond, t):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_noisy = apply_conditioning(x_noisy, cond, self.action_dim)
x_recon = self.model(x_noisy, cond, t)
x_recon = apply_conditioning(x_recon, cond, self.action_dim)
assert noise.shape == x_recon.shape
if self.predict_epsilon:
loss = F.mse_loss(x_recon, noise, reduction='none')
a0_loss = (loss[:, 0, :self.action_dim] / self.loss_weights[0, :self.action_dim].to(loss.device)).mean()
loss = (loss * self.loss_weights.to(loss.device)).mean()
else:
loss = F.mse_loss(x_recon, x_start, reduction='none')
a0_loss = (loss[:, 0, :self.action_dim] / self.loss_weights[0, :self.action_dim].to(loss.device)).mean()
loss = (loss * self.loss_weights.to(loss.device)).mean()
return loss, a0_loss
def forward(self, cond, *args, **kwargs):
return self.conditional_sample(cond, *args, **kwargs)
class ValueDiffusion(GaussianDiffusion):
"""
Overview:
Gaussian diffusion model for value function.
"""
def p_losses(self, x_start, cond, target, t):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_noisy = apply_conditioning(x_noisy, cond, self.action_dim)
pred = self.model(x_noisy, cond, t)
loss = F.mse_loss(pred, target, reduction='none').mean()
log = {
'mean_pred': pred.mean().item(),
'max_pred': pred.max().item(),
'min_pred': pred.min().item(),
}
return loss, log
def forward(self, x, cond, t):
return self.model(x, cond, t)
@MODEL_REGISTRY.register('pd')
class PlanDiffuser(nn.Module):
"""
Overview:
Diffuser model for plan.
Arguments:
- diffuser_model (:obj:`str`): type of plan model
- diffuser_model_cfg (:obj:'dict') config of diffuser_model
- value_model (:obj:`str`): type of value model, if haven't use, set it as None
- value_model_cfg (:obj:`int`): config of value_model
- sample_kwargs : config of sample function
"""
def __init__(
self, diffuser_model: str, diffuser_model_cfg: dict, value_model: str, value_model_cfg: dict, **sample_kwargs
):
super().__init__()
diffuser_model = eval(diffuser_model)
self.diffuser = diffuser_model(**diffuser_model_cfg)
self.value = None
if value_model:
value_model = eval(value_model)
self.value = value_model(**value_model_cfg)
self.sample_kwargs = sample_kwargs
def diffuser_loss(self, x_start, cond, t):
return self.diffuser.p_losses(x_start, cond, t)
def value_loss(self, x_start, cond, target, t):
return self.value.p_losses(x_start, cond, target, t)
def get_eval(self, cond, batch_size=1):
cond = self.repeat_cond(cond, batch_size)
if self.value:
samples = self.diffuser(
cond, sample_fn=n_step_guided_p_sample, plan_size=batch_size, guide=self.value, **self.sample_kwargs
)
# extract action [eval_num, batch_size, horizon, transition_dim]
actions = samples.trajectories[:, :, :, :self.diffuser.action_dim]
action = actions[:, 0, 0]
return action
else:
samples = self.diffuser(cond, plan_size=batch_size)
return samples.trajectories[:, :, :, self.diffuser.action_dim:].squeeze(1)
def repeat_cond(self, cond, batch_size):
for k, v in cond.items():
cond[k] = v.repeat_interleave(batch_size, dim=0)
return cond
@MODEL_REGISTRY.register('dd')
class GaussianInvDynDiffusion(nn.Module):
"""
Overview:
Gaussian diffusion model with Invdyn action model.
Arguments:
- model (:obj:`str`): type of model
- model_cfg (:obj:'dict') config of model
- horizon (:obj:`int`): horizon of trajectory
- obs_dim (:obj:`int`): Dim of the ovservation
- action_dim (:obj:`int`): Dim of the ation
- n_timesteps (:obj:`int`): Number of timesteps
- hidden_dim (:obj:'int'): hidden dim of inv_model
- returns_condition (:obj:'bool'): Whether use returns condition
- ar_inv (:obj:'bool'): Whether use inverse action learning
- train_only_inv (:obj:'bool'): Whether train inverse action model only
- predict_epsilon (:obj:'bool'): Whether predict epsilon
- condition_guidance_w (:obj:'float'): weight of condition guidance
- loss_discount (:obj:'float'): discount of loss
"""
def __init__(
self,
model: str,
model_cfg: dict,
horizon: int,
obs_dim: Union[int, SequenceType],
action_dim: Union[int, SequenceType],
n_timesteps: int = 1000,
hidden_dim: int = 256,
returns_condition: bool = False,
ar_inv: bool = False,
train_only_inv: bool = False,
predict_epsilon: bool = True,
condition_guidance_w: float = 0.1,
loss_discount: float = 1.0,
clip_denoised: bool = False,
) -> None:
super().__init__()
self.horizon = horizon
self.obs_dim = obs_dim
self.action_dim = action_dim
self.transition_dim = obs_dim + action_dim
if type(model) == str:
model = eval(model)
self.model = model(**model_cfg)
self.ar_inv = ar_inv
self.train_only_inv = train_only_inv
self.predict_epsilon = predict_epsilon
self.condition_guidance_w = condition_guidance_w
self.inv_model = nn.Sequential(
nn.Linear(2 * self.obs_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, self.action_dim),
)
self.returns_condition = returns_condition
self.clip_denoised = clip_denoised
betas = cosine_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = int(n_timesteps)
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# log calculation clipped because the posterior variance
# is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1', betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer(
'posterior_mean_coef2', (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)
)
self.loss_weights = self.get_loss_weights(loss_discount)
def get_loss_weights(self, discount: int):
self.action_weight = 1
dim_weights = torch.ones(self.obs_dim, dtype=torch.float32)
# decay loss with trajectory timestep: discount**t
discounts = discount ** torch.arange(self.horizon, dtype=torch.float)
discounts = discounts / discounts.mean()
loss_weights = torch.einsum('h,t->ht', discounts, dim_weights)
# Cause things are conditioned on t=0
if self.predict_epsilon:
loss_weights[0, :] = 0
return loss_weights
def predict_start_from_noise(self, x_t, t, noise):
"""
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
"""
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
else:
return noise
def q_posterior(self, x_start, x_t, t):
"""
Arguments:
x_start (:obj:'tensor') noise trajectory in timestep 0
x_t (:obj:'tuple') noise trajectory in timestep t
t (:obj:'int') timestep of diffusion step
"""
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, cond, t, returns=None):
"""
Arguments:
x (:obj:'tensor') noise trajectory in timestep t
cond (:obj:'tuple') [ (time, state), ... ] state is init state of env, time = 0
t (:obj:'int') timestep of diffusion step
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
returns:
model_mean (:obj:'tensor.float')
posterior_variance (:obj:'float')
posterior_log_variance (:obj:'float')
"""
if self.returns_condition:
# epsilon could be epsilon or x0 itself
epsilon_cond = self.model(x, cond, t, returns, use_dropout=False)
epsilon_uncond = self.model(x, cond, t, returns, force_dropout=True)
epsilon = epsilon_uncond + self.condition_guidance_w * (epsilon_cond - epsilon_uncond)
else:
epsilon = self.model(x, cond, t)
t = t.detach().to(torch.int64)
x_recon = self.predict_start_from_noise(x, t=t, noise=epsilon)
if self.clip_denoised:
x_recon.clamp_(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, cond, t, returns=None):
"""
Arguments:
x (:obj:'tensor') noise trajectory in timestep t
cond (:obj:'tuple') [ (time, state), ... ] state is init state of env, time = 0
t (:obj:'int') timestep of diffusion step
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
"""
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, cond=cond, t=t, returns=returns)
noise = 0.5 * torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1, ) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, cond, returns=None, verbose=True, return_diffusion=False):
"""
Arguments:
shape (:obj:'tuple') (batch_size, horizon, self.obs_dim)
cond (:obj:'tuple') [ (time, state), ... ] state is init state of env, time = 0
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
horizon (:obj:'int') horizon of trajectory
verbose (:obj:'bool') whether log diffusion progress
return_diffusion (:obj:'bool') whether use return diffusion
"""
device = self.betas.device
batch_size = shape[0]
x = 0.5 * torch.randn(shape, device=device)
# In this model, init state must be given by the env and without noise.
x = apply_conditioning(x, cond, 0)
if return_diffusion:
diffusion = [x]
for i in reversed(range(0, self.n_timesteps)):
timesteps = torch.full((batch_size, ), i, device=device, dtype=torch.long)
x = self.p_sample(x, cond, timesteps, returns)
x = apply_conditioning(x, cond, 0)
if return_diffusion:
diffusion.append(x)
if return_diffusion:
return x, torch.stack(diffusion, dim=1)
else:
return x
@torch.no_grad()
def conditional_sample(self, cond, returns=None, horizon=None, *args, **kwargs):
"""
Arguments:
conditions (:obj:'tuple') [ (time, state), ... ] state is init state of env, time is timestep of trajectory
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
horizon (:obj:'int') horizon of trajectory
returns:
x (:obj:'tensor') tarjctory of env
"""
device = self.betas.device
batch_size = len(cond[0])
horizon = horizon or self.horizon
shape = (batch_size, horizon, self.obs_dim)
return self.p_sample_loop(shape, cond, returns, *args, **kwargs)
def q_sample(self, x_start, t, noise=None):
"""
Arguments:
conditions (:obj:'tuple') [ (time, state), ... ] conditions of diffusion
t (:obj:'int') timestep of diffusion
noise (:obj:'tensor.float') timestep's noise of diffusion
"""
if noise is None:
noise = torch.randn_like(x_start)
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, cond, t, returns=None):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_noisy = apply_conditioning(x_noisy, cond, 0)
x_recon = self.model(x_noisy, cond, t, returns)
if not self.predict_epsilon:
x_recon = apply_conditioning(x_recon, cond, 0)
assert noise.shape == x_recon.shape
if self.predict_epsilon:
loss = F.mse_loss(x_recon, noise, reduction='none')
loss = (loss * self.loss_weights.to(loss.device)).mean()
else:
loss = F.mse_loss(x_recon, x_start, reduction='none')
loss = (loss * self.loss_weights.to(loss.device)).mean()
return loss
def forward(self, cond, *args, **kwargs):
return self.conditional_sample(cond=cond, *args, **kwargs)