|
import copy |
|
import os |
|
from datetime import datetime |
|
from itertools import product |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
from ding.envs import BaseEnvTimestep |
|
from ding.envs.common import affine_transform |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from easydict import EasyDict |
|
|
|
from zoo.box2d.bipedalwalker.envs.bipedalwalker_env import BipedalWalkerEnv |
|
|
|
|
|
@ENV_REGISTRY.register('bipedalwalker_cont_disc') |
|
class BipedalWalkerDiscEnv(BipedalWalkerEnv): |
|
""" |
|
Overview: |
|
The modified BipedalWalker environment with manually discretized action space. For each dimension, equally dividing the |
|
original continuous action into ``each_dim_disc_size`` bins and using their Cartesian product to obtain |
|
handcrafted discrete actions. |
|
""" |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
""" |
|
Overview: |
|
Get the default configuration of the BipedalWalker environment. |
|
Returns: |
|
- cfg (:obj:`EasyDict`): Default configuration dictionary. |
|
""" |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
config = dict( |
|
|
|
env_name="BipedalWalker-v3", |
|
|
|
each_dim_disc_size=4, |
|
|
|
save_replay_gif=False, |
|
|
|
replay_path_gif=None, |
|
|
|
replay_path=None, |
|
|
|
act_scale=True, |
|
|
|
rew_clip=True, |
|
|
|
collect_max_episode_steps=int(1.08e5), |
|
|
|
eval_max_episode_steps=int(1.08e5), |
|
) |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
""" |
|
Overview: |
|
Initialize the BipedalWalker environment with the given config dictionary. |
|
Arguments: |
|
- cfg (:obj:`dict`): Configuration dictionary. |
|
""" |
|
self._cfg = cfg |
|
self._init_flag = False |
|
self._env_name = cfg.env_name |
|
self._act_scale = cfg.act_scale |
|
self._rew_clip = cfg.rew_clip |
|
self._replay_path = cfg.replay_path |
|
self._replay_path_gif = cfg.replay_path_gif |
|
self._save_replay_gif = cfg.save_replay_gif |
|
self._save_replay_count = 0 |
|
|
|
def reset(self) -> np.ndarray: |
|
""" |
|
Overview: |
|
Reset the environment. During the reset phase, the original environment will be created, |
|
and at the same time, the action space will be discretized into "each_dim_disc_size" bins. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Including observation, action_mask, and to_play label. |
|
""" |
|
if not self._init_flag: |
|
self._env = gym.make('BipedalWalker-v3', hardcore=True, render_mode="rgb_array") |
|
self._observation_space = self._env.observation_space |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 |
|
) |
|
self._init_flag = True |
|
if self._replay_path is not None: |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
video_name = f'{self._env.spec.id}-video-{timestamp}' |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix=video_name |
|
) |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._seed = self._seed + np_seed |
|
obs, _ = self._env.reset(seed=self._seed) |
|
elif hasattr(self, '_seed'): |
|
obs, _ = self._env.reset(seed=self._seed) |
|
else: |
|
obs, _ = self._env.reset() |
|
obs = to_ndarray(obs).astype(np.float32) |
|
self._eval_episode_return = 0 |
|
if self._save_replay_gif: |
|
self._frames = [] |
|
|
|
self._raw_action_space = self._env.action_space |
|
self.m = self._raw_action_space.shape[0] |
|
self.n = self._cfg.each_dim_disc_size |
|
self.K = self.n ** self.m |
|
self.disc_to_cont = list(product(*[list(range(self.n)) for _ in range(self.m)])) |
|
|
|
self._action_space = gym.spaces.Discrete(self.K) |
|
|
|
action_mask = np.ones(self.K, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
return obs |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Take an action in the environment. During the step phase, the environment first converts the discrete action into a continuous action, |
|
and then passes it into the original environment. |
|
Arguments: |
|
- action (:obj:`np.ndarray`): Discrete action to be taken in the environment. |
|
Returns: |
|
- BaseEnvTimestep (:obj:`BaseEnvTimestep`): A tuple containing observation, reward, done, and info. |
|
""" |
|
|
|
action = [-1 + 2 / self.n * k for k in self.disc_to_cont[int(action)]] |
|
action = to_ndarray(action) |
|
if action.shape == (1, ): |
|
action = action.squeeze() |
|
if self._act_scale: |
|
action = affine_transform(action, min_val=self._raw_action_space.low, max_val=self._raw_action_space.high) |
|
if self._save_replay_gif: |
|
self._frames.append(self._env.render()) |
|
obs, rew, terminated, truncated, info = self._env.step(action) |
|
done = terminated or truncated |
|
|
|
action_mask = np.ones(self.K, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
self._eval_episode_return += rew |
|
if self._rew_clip: |
|
rew = max(-10, rew) |
|
rew = np.float32(rew) |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
if self._save_replay_gif: |
|
if not os.path.exists(self._replay_path_gif): |
|
os.makedirs(self._replay_path_gif) |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
path = os.path.join( |
|
self._replay_path_gif, |
|
'{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp) |
|
) |
|
self.display_frames_as_gif(self._frames, path) |
|
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!') |
|
self._save_replay_count += 1 |
|
obs = to_ndarray(obs) |
|
rew = to_ndarray([rew]) |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def __repr__(self) -> str: |
|
""" |
|
Overview: |
|
Represent the environment instance as a string. |
|
Returns: |
|
- repr_str (:obj:`str`): Representation string of the environment instance. |
|
""" |
|
return "LightZero BipedalWalker Env (with manually discretized action space)" |
|
|
|
|