|
from easydict import EasyDict |
|
|
|
|
|
|
|
|
|
collector_env_num = 8 |
|
n_episode = 8 |
|
evaluator_env_num = 3 |
|
num_simulations = 50 |
|
update_per_collect = 200 |
|
batch_size = 256 |
|
max_env_step = int(5e6) |
|
reanalyze_ratio = 0. |
|
|
|
|
|
|
|
|
|
lunarlander_muzero_config = dict( |
|
exp_name=f'data_mz_ctree/lunarlander_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0', |
|
env=dict( |
|
env_name='LunarLander-v2', |
|
continuous=False, |
|
manually_discretization=False, |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
n_evaluator_episode=evaluator_env_num, |
|
manager=dict(shared_memory=False, ), |
|
), |
|
policy=dict( |
|
model=dict( |
|
observation_shape=8, |
|
action_space_size=4, |
|
model_type='mlp', |
|
lstm_hidden_size=256, |
|
latent_state_dim=256, |
|
self_supervised_learning_loss=True, |
|
discrete_action_encoding_type='one_hot', |
|
res_connection_in_dynamics=True, |
|
norm_type='BN', |
|
), |
|
cuda=True, |
|
env_type='not_board_games', |
|
game_segment_length=200, |
|
update_per_collect=update_per_collect, |
|
batch_size=batch_size, |
|
optim_type='Adam', |
|
lr_piecewise_constant_decay=False, |
|
learning_rate=0.003, |
|
ssl_loss_weight=2, |
|
grad_clip_value=0.5, |
|
num_simulations=num_simulations, |
|
reanalyze_ratio=reanalyze_ratio, |
|
n_episode=n_episode, |
|
eval_freq=int(1e3), |
|
replay_buffer_size=int(1e6), |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
), |
|
) |
|
lunarlander_muzero_config = EasyDict(lunarlander_muzero_config) |
|
main_config = lunarlander_muzero_config |
|
|
|
lunarlander_muzero_create_config = dict( |
|
env=dict( |
|
type='lunarlander', |
|
import_names=['zoo.box2d.lunarlander.envs.lunarlander_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict( |
|
type='muzero', |
|
import_names=['lzero.policy.muzero'], |
|
), |
|
collector=dict( |
|
type='episode_muzero', |
|
get_train_sample=True, |
|
import_names=['lzero.worker.muzero_collector'], |
|
) |
|
) |
|
lunarlander_muzero_create_config = EasyDict(lunarlander_muzero_create_config) |
|
create_config = lunarlander_muzero_create_config |
|
|
|
if __name__ == "__main__": |
|
|
|
entry_type = "train_muzero" |
|
|
|
if entry_type == "train_muzero": |
|
from lzero.entry import train_muzero |
|
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) |
|
elif entry_type == "train_muzero_with_gym_env": |
|
""" |
|
The ``train_muzero_with_gym_env`` entry means that the environment used in the training process is generated by wrapping the original gym environment with LightZeroEnvWrapper. |
|
Users can refer to lzero/envs/wrappers for more details. |
|
""" |
|
from lzero.entry import train_muzero_with_gym_env |
|
train_muzero_with_gym_env([main_config, create_config], seed=0, max_env_step=max_env_step) |
|
|