|
import os |
|
from itertools import product |
|
from typing import Union |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
from ding.envs import BaseEnvTimestep |
|
from ding.envs.common import save_frames_as_gif |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from dizoo.mujoco.envs.mujoco_disc_env import MujocoDiscEnv |
|
|
|
|
|
@ENV_REGISTRY.register('mujoco_disc_lightzero') |
|
class MujocoDiscEnvLZ(MujocoDiscEnv): |
|
""" |
|
Overview: |
|
The modified Mujoco environment with manually discretized action space for LightZero's algorithms. |
|
For each dimension, equally dividing the original continuous action into ``each_dim_disc_size`` bins and |
|
using their Cartesian product to obtain handcrafted discrete actions. |
|
""" |
|
|
|
config = dict( |
|
action_clip=False, |
|
delay_reward_step=0, |
|
replay_path=None, |
|
save_replay_gif=False, |
|
replay_path_gif=None, |
|
action_bins_per_branch=None, |
|
norm_obs=dict(use_norm=False, ), |
|
norm_reward=dict(use_norm=False, ), |
|
) |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
""" |
|
Overview: |
|
Initialize the MuJoCo environment with the given config dictionary. |
|
Arguments: |
|
- cfg (:obj:`dict`): Configuration dictionary. |
|
""" |
|
super().__init__(cfg) |
|
self._cfg = cfg |
|
|
|
self._cfg.env_id = self._cfg.env_name |
|
self._action_clip = cfg.action_clip |
|
self._delay_reward_step = cfg.delay_reward_step |
|
self._init_flag = False |
|
self._replay_path = None |
|
self._replay_path_gif = cfg.replay_path_gif |
|
self._save_replay_gif = cfg.save_replay_gif |
|
|
|
def reset(self) -> np.ndarray: |
|
""" |
|
Overview: |
|
Reset the environment. During the reset phase, the original environment will be created, |
|
and at the same time, the action space will be discretized into "each_dim_disc_size" bins. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Including observation, action_mask, and to_play label. |
|
""" |
|
if not self._init_flag: |
|
self._env = self._make_env() |
|
self._env.observation_space.dtype = np.float32 |
|
self._observation_space = self._env.observation_space |
|
self._raw_action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
if self._replay_path is not None: |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix='rl-video-{}'.format(id(self)) |
|
) |
|
if self._save_replay_gif: |
|
self._frames = [] |
|
obs = self._env.reset() |
|
obs = to_ndarray(obs).astype('float32') |
|
|
|
|
|
self.m = self._raw_action_space.shape[0] |
|
self.n = self._cfg.each_dim_disc_size |
|
self.K = self.n ** self.m |
|
self.disc_to_cont = list(product(*[list(range(self.n)) for _ in range(self.m)])) |
|
self._eval_episode_return = 0. |
|
|
|
self._action_space = gym.spaces.Discrete(self.K) |
|
|
|
action_mask = np.ones(self.K, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return obs |
|
|
|
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Take an action in the environment. During the step phase, the environment first converts the discrete action into a continuous action, |
|
and then passes it into the original environment. |
|
Arguments: |
|
- action (:obj:`Union[np.ndarray, list]`): Discrete action to be taken in the environment. |
|
Returns: |
|
- BaseEnvTimestep (:obj:`BaseEnvTimestep`): A tuple containing observation, reward, done, and info. |
|
""" |
|
|
|
action = [-1 + 2 / self.n * k for k in self.disc_to_cont[int(action)]] |
|
action = to_ndarray(action) |
|
|
|
if self._save_replay_gif: |
|
self._frames.append(self._env.render(mode='rgb_array')) |
|
if self._action_clip: |
|
action = np.clip(action, -1, 1) |
|
obs, rew, done, info = self._env.step(action) |
|
|
|
self._eval_episode_return += rew |
|
|
|
if done: |
|
if self._save_replay_gif: |
|
path = os.path.join( |
|
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count) |
|
) |
|
save_frames_as_gif(self._frames, path) |
|
self._save_replay_count += 1 |
|
info['eval_episode_return'] = self._eval_episode_return |
|
|
|
obs = to_ndarray(obs).astype(np.float32) |
|
rew = to_ndarray([rew]).astype(np.float32) |
|
|
|
action_mask = np.ones(self._action_space.n, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def __repr__(self) -> str: |
|
""" |
|
Overview: |
|
Represent the environment instance as a string. |
|
Returns: |
|
- repr_str (:obj:`str`): Representation string of the environment instance. |
|
""" |
|
return "LightZero modified Mujoco Env({}) with manually discretized action space".format(self._cfg.env_name) |
|
|