|
import pytest |
|
import numpy as np |
|
from easydict import EasyDict |
|
from dizoo.gym_anytrading.envs import StocksEnv |
|
|
|
|
|
@pytest.mark.envtest |
|
class TestStocksEnv: |
|
|
|
def test_naive(self): |
|
env = StocksEnv(EasyDict({"env_id": 'stocks-v0', "eps_length": 300,\ |
|
"window_size": 20, "train_range": None, "test_range": None, "stocks_data_filename": 'STOCKS_GOOGL'})) |
|
env.seed(314, dynamic_seed=False) |
|
assert env._seed == 314 |
|
obs = env.reset() |
|
assert obs.shape == (62, ) |
|
for _ in range(5): |
|
env.reset() |
|
np.random.seed(314) |
|
print('=' * 60) |
|
for i in range(10): |
|
|
|
|
|
if i < 5: |
|
random_action = np.array([env.action_space.sample()]) |
|
else: |
|
random_action = env.random_action() |
|
timestep = env.step(random_action) |
|
print(timestep) |
|
assert isinstance(timestep.obs, np.ndarray) |
|
assert isinstance(timestep.done, bool) |
|
assert timestep.obs.shape == (62, ) |
|
assert timestep.reward.shape == (1, ) |
|
assert timestep.reward >= env.reward_space.low |
|
assert timestep.reward <= env.reward_space.high |
|
print(env.observation_space, env.action_space, env.reward_space) |
|
env.close() |
|
|