gomoku / LightZero /zoo /minigrid /config /minigrid_muzero_rnd_config.py
zjowowen's picture
init space
079c32c
raw
history blame
5.51 kB
from easydict import EasyDict
# The typical MiniGrid env id: {'MiniGrid-Empty-8x8-v0', 'MiniGrid-FourRooms-v0', 'MiniGrid-DoorKey-8x8-v0','MiniGrid-DoorKey-16x16-v0'},
# please refer to https://github.com/Farama-Foundation/MiniGrid for details.
env_name = 'MiniGrid-Empty-8x8-v0'
max_env_step = int(1e6)
# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
seed = 0
collector_env_num = 8
n_episode = 8
evaluator_env_num = 3
num_simulations = 50
update_per_collect = 200
batch_size = 256
reanalyze_ratio = 0
td_steps = 5
# key exploration related config
policy_entropy_loss_weight = 0.
threshold_training_steps_for_final_temperature = int(5e5)
eps_greedy_exploration_in_collect = True
input_type = 'obs' # options=['obs', 'latent_state', 'obs_latent_state']
target_model_for_intrinsic_reward_update_type = 'assign' # 'assign' or 'momentum'
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================
minigrid_muzero_rnd_config = dict(
exp_name=f'data_mz_rnd_ctree/{env_name}_muzero-rnd_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}'
f'_collect-eps-{eps_greedy_exploration_in_collect}_temp-final-steps-{threshold_training_steps_for_final_temperature}_pelw{policy_entropy_loss_weight}'
f'_rnd-rew-{input_type}-{target_model_for_intrinsic_reward_update_type}_seed{seed}',
env=dict(
stop_value=int(1e6),
env_name=env_name,
continuous=False,
manually_discretization=False,
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
reward_model=dict(
type='rnd_muzero',
intrinsic_reward_type='add',
input_type=input_type, # options=['obs', 'latent_state', 'obs_latent_state']
# intrinsic_reward_weight means the relative weight of RND intrinsic_reward.
# Specifically for sparse reward env MiniGrid, in this env, if we reach goal, the agent gets reward ~1, otherwise 0.
# We could set the intrinsic_reward_weight approximately equal to the inverse of max_episode_steps.Please refer to rnd_reward_model for details.
intrinsic_reward_weight=0.003, # 1/300
obs_shape=2835,
latent_state_dim=512,
hidden_size_list=[256, 256],
learning_rate=3e-3,
weight_decay=1e-4,
batch_size=batch_size,
update_per_collect=200,
rnd_buffer_size=int(1e6),
input_norm=True,
input_norm_clamp_max=5,
input_norm_clamp_min=-5,
extrinsic_reward_norm=True,
extrinsic_reward_norm_max=1,
),
policy=dict(
model=dict(
observation_shape=2835,
action_space_size=7,
model_type='mlp',
lstm_hidden_size=256,
latent_state_dim=512,
discrete_action_encoding_type='one_hot',
norm_type='BN',
self_supervised_learning_loss=True, # NOTE: default is False.
),
use_rnd_model=True,
# RND related config
use_momentum_representation_network=True,
target_model_for_intrinsic_reward_update_type=target_model_for_intrinsic_reward_update_type,
target_update_freq_for_intrinsic_reward=1000,
target_update_theta_for_intrinsic_reward=0.005,
# key exploration related config
policy_entropy_loss_weight=policy_entropy_loss_weight,
eps=dict(
eps_greedy_exploration_in_collect=eps_greedy_exploration_in_collect,
decay=int(2e5),
),
manual_temperature_decay=True,
threshold_training_steps_for_final_temperature=threshold_training_steps_for_final_temperature,
cuda=True,
env_type='not_board_games',
game_segment_length=300,
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='Adam',
lr_piecewise_constant_decay=False,
learning_rate=0.003,
ssl_loss_weight=2, # NOTE: default is 0.
td_steps=td_steps,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
n_episode=n_episode,
eval_freq=int(2e2),
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions.
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
minigrid_muzero_rnd_config = EasyDict(minigrid_muzero_rnd_config)
main_config = minigrid_muzero_rnd_config
minigrid_muzero_create_config = dict(
env=dict(
type='minigrid_lightzero',
import_names=['zoo.minigrid.envs.minigrid_lightzero_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='muzero',
import_names=['lzero.policy.muzero'],
),
collector=dict(
type='episode_muzero',
import_names=['lzero.worker.muzero_collector'],
)
)
minigrid_muzero_create_config = EasyDict(minigrid_muzero_create_config)
create_config = minigrid_muzero_create_config
if __name__ == "__main__":
from lzero.entry import train_muzero_with_reward_model
train_muzero_with_reward_model([main_config, create_config], seed=seed, max_env_step=max_env_step)