|
from typing import Union, List |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import reduce |
|
from ding.utils import list_split, MODEL_REGISTRY |
|
from ding.torch_utils.network.nn_module import fc_block, MLP |
|
from ding.torch_utils.network.transformer import ScaledDotProductAttention |
|
from .q_learning import DRQN |
|
from ding.model.template.qmix import Mixer |
|
|
|
|
|
class MixerStar(nn.Module): |
|
""" |
|
Overview: |
|
Mixer network for Q_star in WQMIX(https://arxiv.org/abs/2006.10800), which mix up the independent q_value of \ |
|
each agent to a total q_value and is diffrent from the QMIX's mixer network, \ |
|
here the mixing network is a feedforward network with 3 hidden layers of 256 dim. \ |
|
This Q_star mixing network is not constrained to be monotonic by using non-negative weights and \ |
|
having the state and agent_q be inputs, as opposed to having hypernetworks take the state as input \ |
|
and generate the weights in QMIX. |
|
Interface: |
|
``__init__``, ``forward``. |
|
""" |
|
|
|
def __init__(self, agent_num: int, state_dim: int, mixing_embed_dim: int) -> None: |
|
""" |
|
Overview: |
|
Initialize the mixer network of Q_star in WQMIX. |
|
Arguments: |
|
- agent_num (:obj:`int`): The number of agent, e.g., 8. |
|
- state_dim(:obj:`int`): The dimension of global observation state, e.g., 16. |
|
- mixing_embed_dim (:obj:`int`): The dimension of mixing state emdedding, e.g., 128. |
|
""" |
|
super(MixerStar, self).__init__() |
|
self.agent_num = agent_num |
|
self.state_dim = state_dim |
|
self.embed_dim = mixing_embed_dim |
|
self.input_dim = self.agent_num + self.state_dim |
|
non_lin = nn.ReLU() |
|
self.net = nn.Sequential( |
|
nn.Linear(self.input_dim, self.embed_dim), non_lin, nn.Linear(self.embed_dim, self.embed_dim), non_lin, |
|
nn.Linear(self.embed_dim, self.embed_dim), non_lin, nn.Linear(self.embed_dim, 1) |
|
) |
|
|
|
|
|
self.V = nn.Sequential(nn.Linear(self.state_dim, self.embed_dim), non_lin, nn.Linear(self.embed_dim, 1)) |
|
|
|
def forward(self, agent_qs: torch.FloatTensor, states: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
Overview: |
|
Forward computation graph of the mixer network for Q_star in WQMIX. This mixer network for \ |
|
is a feed-forward network that takes the state and the appropriate actions' utilities as input. |
|
Arguments: |
|
- agent_qs (:obj:`torch.FloatTensor`): The independent q_value of each agent. |
|
- states (:obj:`torch.FloatTensor`): The emdedding vector of global state. |
|
Returns: |
|
- q_tot (:obj:`torch.FloatTensor`): The total mixed q_value. |
|
Shapes: |
|
- agent_qs (:obj:`torch.FloatTensor`): :math:`(T,B, N)`, where T is timestep, \ |
|
B is batch size, A is agent_num, N is obs_shape. |
|
- states (:obj:`torch.FloatTensor`): :math:`(T, B, M)`, where M is global_obs_shape. |
|
- q_tot (:obj:`torch.FloatTensor`): :math:`(T, B, )`. |
|
""" |
|
|
|
|
|
|
|
bs = agent_qs.shape[:-1] |
|
states = states.reshape(-1, self.state_dim) |
|
agent_qs = agent_qs.reshape(-1, self.agent_num) |
|
inputs = torch.cat([states, agent_qs], dim=1) |
|
advs = self.net(inputs) |
|
vs = self.V(states) |
|
y = advs + vs |
|
q_tot = y.view(*bs) |
|
|
|
return q_tot |
|
|
|
|
|
@MODEL_REGISTRY.register('wqmix') |
|
class WQMix(nn.Module): |
|
""" |
|
Overview: |
|
WQMIX (https://arxiv.org/abs/2006.10800) network, There are two components: \ |
|
1) Q_tot, which is same as QMIX network and composed of agent Q network and mixer network. \ |
|
2) An unrestricted joint action Q_star, which is composed of agent Q network and mixer_star network. \ |
|
The QMIX paper mentions that all agents share local Q network parameters, so only one Q network is initialized \ |
|
in Q_tot or Q_star. |
|
Interface: |
|
``__init__``, ``forward``. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
agent_num: int, |
|
obs_shape: int, |
|
global_obs_shape: int, |
|
action_shape: int, |
|
hidden_size_list: list, |
|
lstm_type: str = 'gru', |
|
dueling: bool = False |
|
) -> None: |
|
""" |
|
Overview: |
|
Initialize WQMIX neural network according to arguments, i.e. agent Q network and mixer, \ |
|
Q_star network and mixer_star. |
|
Arguments: |
|
- agent_num (:obj:`int`): The number of agent, such as 8. |
|
- obs_shape (:obj:`int`): The dimension of each agent's observation state, such as 8. |
|
- global_obs_shape (:obj:`int`): The dimension of global observation state, such as 8. |
|
- action_shape (:obj:`int`): The dimension of action shape, such as 6. |
|
- hidden_size_list (:obj:`list`): The list of hidden size for ``q_network``, \ |
|
the last element must match mixer's ``mixing_embed_dim``. |
|
- lstm_type (:obj:`str`): The type of RNN module in ``q_network``, now support \ |
|
['normal', 'pytorch', 'gru'], default to gru. |
|
- dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \ |
|
default to False. |
|
""" |
|
super(WQMix, self).__init__() |
|
self._act = nn.ReLU() |
|
self._q_network = DRQN(obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling) |
|
self._q_network_star = DRQN(obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling) |
|
embedding_size = hidden_size_list[-1] |
|
self._mixer = Mixer(agent_num, global_obs_shape, mixing_embed_dim=embedding_size) |
|
self._mixer_star = MixerStar( |
|
agent_num, global_obs_shape, mixing_embed_dim=256 |
|
) |
|
self._global_state_encoder = nn.Identity() |
|
|
|
def forward(self, data: dict, single_step: bool = True, q_star: bool = False) -> dict: |
|
""" |
|
Overview: |
|
Forward computation graph of qmix network. Input dict including time series observation and \ |
|
related data to predict total q_value and each agent q_value. Determine whether to calculate \ |
|
Q_tot or Q_star based on the ``q_star`` parameter. |
|
Arguments: |
|
- data (:obj:`dict`): Input data dict with keys ['obs', 'prev_state', 'action']. |
|
- agent_state (:obj:`torch.Tensor`): Time series local observation data of each agents. |
|
- global_state (:obj:`torch.Tensor`): Time series global observation data. |
|
- prev_state (:obj:`list`): Previous rnn state for ``q_network`` or ``_q_network_star``. |
|
- action (:obj:`torch.Tensor` or None): If action is None, use argmax q_value index as action to\ |
|
calculate ``agent_q_act``. |
|
- single_step (:obj:`bool`): Whether single_step forward, if so, add timestep dim before forward and\ |
|
remove it after forward. |
|
- Q_star (:obj:`bool`): Whether Q_star network forward. If True, using the Q_star network, where the\ |
|
agent networks have the same architecture as Q network but do not share parameters and the mixing\ |
|
network is a feedforward network with 3 hidden layers of 256 dim; if False, using the Q network,\ |
|
same as the Q network in Qmix paper. |
|
Returns: |
|
- ret (:obj:`dict`): Output data dict with keys [``total_q``, ``logit``, ``next_state``]. |
|
- total_q (:obj:`torch.Tensor`): Total q_value, which is the result of mixer network. |
|
- agent_q (:obj:`torch.Tensor`): Each agent q_value. |
|
- next_state (:obj:`list`): Next rnn state. |
|
Shapes: |
|
- agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\ |
|
A is agent_num, N is obs_shape. |
|
- global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape. |
|
- prev_state (:obj:`list`): math:`(T, B, A)`, a list of length B, and each element is a list of length A. |
|
- action (:obj:`torch.Tensor`): :math:`(T, B, A)`. |
|
- total_q (:obj:`torch.Tensor`): :math:`(T, B)`. |
|
- agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape. |
|
- next_state (:obj:`list`): math:`(T, B, A)`, a list of length B, and each element is a list of length A. |
|
""" |
|
if q_star: |
|
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[ |
|
'prev_state'] |
|
action = data.get('action', None) |
|
if single_step: |
|
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0) |
|
T, B, A = agent_state.shape[:3] |
|
assert len(prev_state) == B and all( |
|
[len(p) == A for p in prev_state] |
|
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0])) |
|
prev_state = reduce(lambda x, y: x + y, prev_state) |
|
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:]) |
|
output = self._q_network_star( |
|
{ |
|
'obs': agent_state, |
|
'prev_state': prev_state, |
|
'enable_fast_timestep': True |
|
} |
|
) |
|
agent_q, next_state = output['logit'], output['next_state'] |
|
next_state, _ = list_split(next_state, step=A) |
|
agent_q = agent_q.reshape(T, B, A, -1) |
|
if action is None: |
|
|
|
if len(data['obs']['action_mask'].shape) == 3: |
|
action_mask = data['obs']['action_mask'].unsqueeze(0) |
|
else: |
|
action_mask = data['obs']['action_mask'] |
|
agent_q[action_mask == 0.0] = -9999999 |
|
action = agent_q.argmax(dim=-1) |
|
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1)) |
|
agent_q_act = agent_q_act.squeeze(-1) |
|
|
|
global_state_embedding = self._global_state_encoder(global_state) |
|
total_q = self._mixer_star( |
|
agent_q_act, global_state_embedding |
|
) |
|
|
|
if single_step: |
|
total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0) |
|
return { |
|
'total_q': total_q, |
|
'logit': agent_q, |
|
'next_state': next_state, |
|
'action_mask': data['obs']['action_mask'] |
|
} |
|
else: |
|
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[ |
|
'prev_state'] |
|
action = data.get('action', None) |
|
if single_step: |
|
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0) |
|
T, B, A = agent_state.shape[:3] |
|
assert len(prev_state) == B and all( |
|
[len(p) == A for p in prev_state] |
|
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0])) |
|
prev_state = reduce(lambda x, y: x + y, prev_state) |
|
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:]) |
|
output = self._q_network( |
|
{ |
|
'obs': agent_state, |
|
'prev_state': prev_state, |
|
'enable_fast_timestep': True |
|
} |
|
) |
|
agent_q, next_state = output['logit'], output['next_state'] |
|
next_state, _ = list_split(next_state, step=A) |
|
agent_q = agent_q.reshape(T, B, A, -1) |
|
if action is None: |
|
|
|
if len(data['obs']['action_mask'].shape) == 3: |
|
action_mask = data['obs']['action_mask'].unsqueeze(0) |
|
else: |
|
action_mask = data['obs']['action_mask'] |
|
agent_q[action_mask == 0.0] = -9999999 |
|
action = agent_q.argmax(dim=-1) |
|
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1)) |
|
agent_q_act = agent_q_act.squeeze(-1) |
|
|
|
global_state_embedding = self._global_state_encoder(global_state) |
|
total_q = self._mixer( |
|
agent_q_act, global_state_embedding |
|
) |
|
|
|
if single_step: |
|
total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0) |
|
return { |
|
'total_q': total_q, |
|
'logit': agent_q, |
|
'next_state': next_state, |
|
'action_mask': data['obs']['action_mask'] |
|
} |
|
|