|
from typing import List, Dict, Any, Tuple, Union, Optional |
|
from collections import namedtuple |
|
import torch |
|
import copy |
|
|
|
from ding.torch_utils import RMSprop, to_device |
|
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \ |
|
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import timestep_collate, default_collate, default_decollate |
|
from .qmix import QMIXPolicy |
|
|
|
|
|
@POLICY_REGISTRY.register('madqn') |
|
class MADQNPolicy(QMIXPolicy): |
|
config = dict( |
|
|
|
type='madqn', |
|
|
|
cuda=True, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
nstep=3, |
|
learn=dict( |
|
update_per_collect=20, |
|
batch_size=32, |
|
learning_rate=0.0005, |
|
clip_value=100, |
|
|
|
|
|
|
|
|
|
|
|
target_update_theta=0.008, |
|
|
|
|
|
discount_factor=0.99, |
|
|
|
double_q=False, |
|
weight_decay=1e-5, |
|
), |
|
collect=dict( |
|
|
|
n_episode=32, |
|
|
|
|
|
unroll_len=10, |
|
), |
|
eval=dict(), |
|
other=dict( |
|
eps=dict( |
|
|
|
type='exp', |
|
|
|
|
|
start=1, |
|
|
|
end=0.05, |
|
|
|
decay=50000, |
|
), |
|
replay_buffer=dict( |
|
replay_buffer_size=5000, |
|
|
|
max_reuse=1e+9, |
|
max_staleness=1e+9, |
|
), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default model setting for demonstration. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names |
|
""" |
|
return 'madqn', ['ding.model.template.madqn'] |
|
|
|
def _init_learn(self) -> None: |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in QMIX" |
|
self._optimizer_current = RMSprop( |
|
params=self._model.current.parameters(), |
|
lr=self._cfg.learn.learning_rate, |
|
alpha=0.99, |
|
eps=0.00001, |
|
weight_decay=self._cfg.learn.weight_decay |
|
) |
|
self._optimizer_cooperation = RMSprop( |
|
params=self._model.cooperation.parameters(), |
|
lr=self._cfg.learn.learning_rate, |
|
alpha=0.99, |
|
eps=0.00001, |
|
weight_decay=self._cfg.learn.weight_decay |
|
) |
|
self._gamma = self._cfg.learn.discount_factor |
|
self._nstep = self._cfg.nstep |
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_update_theta} |
|
) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.learn.batch_size, |
|
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] |
|
) |
|
self._learn_model = model_wrap( |
|
self._model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.learn.batch_size, |
|
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] |
|
) |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _data_preprocess_learn(self, data: List[Any]) -> dict: |
|
r""" |
|
Overview: |
|
Preprocess the data to fit the required data format for learning |
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function |
|
Returns: |
|
- data (:obj:`Dict[str, Any]`): the processed data, from \ |
|
[len=B, ele={dict_key: [len=T, ele=Tensor(any_dims)]}] -> {dict_key: Tensor([T, B, any_dims])} |
|
""" |
|
|
|
data = timestep_collate(data) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
data['weight'] = data.get('weight', None) |
|
data['done'] = data['done'].float() |
|
return data |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ |
|
np.ndarray or dict/list combinations. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ |
|
recorded in text log and tensorboard, values are python scalar or a list of scalars. |
|
ArgumentsKeys: |
|
- necessary: ``obs``, ``next_obs``, ``action``, ``reward``, ``weight``, ``prev_state``, ``done`` |
|
ReturnsKeys: |
|
- necessary: ``cur_lr``, ``total_loss`` |
|
- cur_lr (:obj:`float`): Current learning rate |
|
- total_loss (:obj:`float`): The calculated loss |
|
""" |
|
data = self._data_preprocess_learn(data) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
self._learn_model.reset(state=data['prev_state'][0]) |
|
self._target_model.reset(state=data['prev_state'][0]) |
|
inputs = {'obs': data['obs'], 'action': data['action']} |
|
|
|
total_q = self._learn_model.forward(inputs, single_step=False)['total_q'] |
|
|
|
if self._cfg.learn.double_q: |
|
next_inputs = {'obs': data['next_obs']} |
|
self._learn_model.reset(state=data['prev_state'][1]) |
|
logit_detach = self._learn_model.forward(next_inputs, single_step=False)['logit'].clone().detach() |
|
next_inputs = {'obs': data['next_obs'], 'action': logit_detach.argmax(dim=-1)} |
|
else: |
|
next_inputs = {'obs': data['next_obs']} |
|
with torch.no_grad(): |
|
target_total_q = self._target_model.forward(next_inputs, cooperation=True, single_step=False)['total_q'] |
|
|
|
if self._nstep == 1: |
|
|
|
v_data = v_1step_td_data(total_q, target_total_q, data['reward'], data['done'], data['weight']) |
|
loss, td_error_per_sample = v_1step_td_error(v_data, self._gamma) |
|
|
|
with torch.no_grad(): |
|
if data['done'] is not None: |
|
target_v = self._gamma * (1 - data['done']) * target_total_q + data['reward'] |
|
else: |
|
target_v = self._gamma * target_total_q + data['reward'] |
|
else: |
|
data['reward'] = data['reward'].permute(0, 2, 1).contiguous() |
|
loss = [] |
|
td_error_per_sample = [] |
|
for t in range(self._cfg.collect.unroll_len): |
|
v_data = v_nstep_td_data( |
|
total_q[t], target_total_q[t], data['reward'][t], data['done'][t], data['weight'], self._gamma |
|
) |
|
|
|
loss_i, td_error_per_sample_i = v_nstep_td_error(v_data, self._gamma, self._nstep) |
|
loss.append(loss_i) |
|
td_error_per_sample.append(td_error_per_sample_i) |
|
loss = sum(loss) / (len(loss) + 1e-8) |
|
td_error_per_sample = sum(td_error_per_sample) / (len(td_error_per_sample) + 1e-8) |
|
|
|
self._optimizer_current.zero_grad() |
|
loss.backward() |
|
grad_norm = torch.nn.utils.clip_grad_norm_(self._model.current.parameters(), self._cfg.learn.clip_value) |
|
self._optimizer_current.step() |
|
|
|
|
|
self._learn_model.reset(state=data['prev_state'][0]) |
|
self._target_model.reset(state=data['prev_state'][0]) |
|
cooperation_total_q = self._learn_model.forward(inputs, cooperation=True, single_step=False)['total_q'] |
|
next_inputs = {'obs': data['next_obs']} |
|
with torch.no_grad(): |
|
cooperation_target_total_q = self._target_model.forward( |
|
next_inputs, cooperation=True, single_step=False |
|
)['total_q'] |
|
|
|
if self._nstep == 1: |
|
v_data = v_1step_td_data( |
|
cooperation_total_q, cooperation_target_total_q, data['reward'], data['done'], data['weight'] |
|
) |
|
cooperation_loss, _ = v_1step_td_error(v_data, self._gamma) |
|
else: |
|
cooperation_loss_all = [] |
|
for t in range(self._cfg.collect.unroll_len): |
|
v_data = v_nstep_td_data( |
|
cooperation_total_q[t], cooperation_target_total_q[t], data['reward'][t], data['done'][t], |
|
data['weight'], self._gamma |
|
) |
|
cooperation_loss, _ = v_nstep_td_error(v_data, self._gamma, self._nstep) |
|
cooperation_loss_all.append(cooperation_loss) |
|
cooperation_loss = sum(cooperation_loss_all) / (len(cooperation_loss_all) + 1e-8) |
|
self._optimizer_cooperation.zero_grad() |
|
cooperation_loss.backward() |
|
cooperation_grad_norm = torch.nn.utils.clip_grad_norm_( |
|
self._model.cooperation.parameters(), self._cfg.learn.clip_value |
|
) |
|
self._optimizer_cooperation.step() |
|
|
|
|
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer_current.defaults['lr'], |
|
'total_loss': loss.item(), |
|
'total_q': total_q.mean().item() / self._cfg.model.agent_num, |
|
'target_total_q': target_total_q.mean().item() / self._cfg.model.agent_num, |
|
'grad_norm': grad_norm, |
|
'cooperation_grad_norm': cooperation_grad_norm, |
|
'cooperation_loss': cooperation_loss.item(), |
|
} |
|
|
|
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None: |
|
r""" |
|
Overview: |
|
Reset learn model to the state indicated by data_id |
|
Arguments: |
|
- data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\ |
|
the model state to the state indicated by data_id |
|
""" |
|
self._learn_model.reset(data_id=data_id) |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model and optimizer. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. |
|
""" |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer_current': self._optimizer_current.state_dict(), |
|
'optimizer_cooperation': self._optimizer_cooperation.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer_current.load_state_dict(state_dict['optimizer_current']) |
|
self._optimizer_cooperation.load_state_dict(state_dict['optimizer_cooperation']) |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
r""" |
|
Overview: |
|
Generate dict type transition data from inputs. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state'] |
|
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\ |
|
(here 'obs' indicates obs after env step). |
|
Returns: |
|
- transition (:obj:`dict`): Dict type transition data, including 'obs', 'next_obs', 'prev_state',\ |
|
'action', 'reward', 'done' |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'prev_state': model_output['prev_state'], |
|
'action': model_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, data: list) -> Union[None, List[Any]]: |
|
r""" |
|
Overview: |
|
Get the train sample from trajectory. |
|
Arguments: |
|
- data (:obj:`list`): The trajectory's cache |
|
Returns: |
|
- samples (:obj:`dict`): The training samples generated |
|
""" |
|
if self._cfg.nstep == 1: |
|
return get_train_sample(data, self._unroll_len) |
|
else: |
|
data = get_nstep_return_data(data, self._nstep, gamma=self._gamma) |
|
return get_train_sample(data, self._unroll_len) |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
r""" |
|
Overview: |
|
Return variables' name if variables are to used in monitor. |
|
Returns: |
|
- vars (:obj:`List[str]`): Variables' name list. |
|
""" |
|
return [ |
|
'cur_lr', 'total_loss', 'total_q', 'target_total_q', 'grad_norm', 'target_reward_total_q', |
|
'cooperation_grad_norm', 'cooperation_loss' |
|
] |
|
|