zjowowen's picture
init space
079c32c
import pytest
import copy
from collections import deque
import numpy as np
import torch
from ding.rl_utils import get_gae, get_gae_with_default_last_value, get_nstep_return_data, get_train_sample
@pytest.mark.unittest
class TestAdder:
def get_transition(self):
return {
'value': torch.randn(1),
'reward': torch.rand(1),
'action': torch.rand(3),
'other': np.random.randint(0, 10, size=(4, )),
'obs': torch.randn(3),
'done': False
}
def get_transition_multi_agent(self):
return {
'value': torch.randn(1, 8),
'reward': torch.rand(1, 1),
'action': torch.rand(3),
'other': np.random.randint(0, 10, size=(4, )),
'obs': torch.randn(3),
'done': False
}
def test_get_gae(self):
transitions = deque([self.get_transition() for _ in range(10)])
last_value = torch.randn(1)
output = get_gae(transitions, last_value, gamma=0.99, gae_lambda=0.97, cuda=False)
for i in range(len(output)):
o = output[i]
assert 'adv' in o.keys()
for k, v in o.items():
if k == 'adv':
assert isinstance(v, torch.Tensor)
assert v.shape == (1, )
else:
if k == 'done':
assert v == transitions[i][k]
else:
assert (v == transitions[i][k]).all()
output1 = get_gae_with_default_last_value(
copy.deepcopy(transitions), True, gamma=0.99, gae_lambda=0.97, cuda=False
)
for i in range(len(output)):
assert output[i]['adv'].ne(output1[i]['adv'])
data = copy.deepcopy(transitions)
data.append({'value': last_value})
output2 = get_gae_with_default_last_value(data, False, gamma=0.99, gae_lambda=0.97, cuda=False)
for i in range(len(output)):
assert output[i]['adv'].eq(output2[i]['adv'])
def test_get_gae_multi_agent(self):
transitions = deque([self.get_transition_multi_agent() for _ in range(10)])
last_value = torch.randn(1, 8)
output = get_gae(transitions, last_value, gamma=0.99, gae_lambda=0.97, cuda=False)
for i in range(len(output)):
o = output[i]
assert 'adv' in o.keys()
for k, v in o.items():
if k == 'adv':
assert isinstance(v, torch.Tensor)
assert v.shape == (
1,
8,
)
else:
if k == 'done':
assert v == transitions[i][k]
else:
assert (v == transitions[i][k]).all()
output1 = get_gae_with_default_last_value(
copy.deepcopy(transitions), True, gamma=0.99, gae_lambda=0.97, cuda=False
)
for i in range(len(output)):
for j in range(output[i]['adv'].shape[1]):
assert output[i]['adv'][0][j].ne(output1[i]['adv'][0][j])
data = copy.deepcopy(transitions)
data.append({'value': last_value})
output2 = get_gae_with_default_last_value(data, False, gamma=0.99, gae_lambda=0.97, cuda=False)
for i in range(len(output)):
for j in range(output[i]['adv'].shape[1]):
assert output[i]['adv'][0][j].eq(output2[i]['adv'][0][j])
def test_get_nstep_return_data(self):
nstep = 3
data = deque([self.get_transition() for _ in range(10)])
output_data = get_nstep_return_data(data, nstep=nstep)
assert len(output_data) == 10
for i, o in enumerate(output_data):
assert o['reward'].shape == (nstep, )
if i >= 10 - nstep + 1:
assert o['done'] is data[-1]['done']
assert o['reward'][-(i - 10 + nstep):].sum() == 0
data = deque([self.get_transition() for _ in range(12)])
output_data = get_nstep_return_data(data, nstep=nstep)
assert len(output_data) == 12
def test_get_train_sample(self):
data = [self.get_transition() for _ in range(10)]
output = get_train_sample(data, unroll_len=1, last_fn_type='drop')
assert len(output) == 10
output = get_train_sample(data, unroll_len=4, last_fn_type='drop')
assert len(output) == 2
for o in output:
for v in o.values():
assert len(v) == 4
output = get_train_sample(data, unroll_len=4, last_fn_type='null_padding')
assert len(output) == 3
for o in output:
for v in o.values():
assert len(v) == 4
assert output[-1]['done'] == [False, False, True, True]
for i in range(1, 10 % 4 + 1):
assert id(output[-1]['obs'][-i]) != id(output[-1]['obs'][0])
output = get_train_sample(data, unroll_len=4, last_fn_type='last')
assert len(output) == 3
for o in output:
for v in o.values():
assert len(v) == 4
miss_num = 4 - 10 % 4
for i in range(10 % 4):
assert id(output[-1]['obs'][i]) != id(output[-2]['obs'][miss_num + i])
output = get_train_sample(data, unroll_len=11, last_fn_type='last')
assert len(output) == 1
assert len(output[0]['obs']) == 11
assert output[-1]['done'][-1] is True
assert output[-1]['done'][0] is False
assert id(output[-1]['obs'][-1]) != id(output[-1]['obs'][0])
test = TestAdder()
test.test_get_gae_multi_agent()