|
import pytest |
|
from itertools import product |
|
import numpy as np |
|
import torch |
|
|
|
from ding.rl_utils import ppo_data, ppo_error, ppo_error_continuous |
|
from ding.rl_utils.ppo import shape_fn_ppo |
|
|
|
use_value_clip_args = [True, False] |
|
dual_clip_args = [None, 5.0] |
|
random_weight = torch.rand(4) + 1 |
|
weight_args = [None, random_weight] |
|
args = [item for item in product(*[use_value_clip_args, dual_clip_args, weight_args])] |
|
|
|
|
|
@pytest.mark.unittest |
|
def test_shape_fn_ppo(): |
|
data = ppo_data(torch.randn(3, 5, 8), None, None, None, None, None, None, None) |
|
shape1 = shape_fn_ppo([data], {}) |
|
shape2 = shape_fn_ppo([], {'data': data}) |
|
assert shape1 == shape2 == (3, 5, 8) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('use_value_clip, dual_clip, weight', args) |
|
def test_ppo(use_value_clip, dual_clip, weight): |
|
B, N = 4, 32 |
|
logit_new = torch.randn(B, N).requires_grad_(True) |
|
logit_old = logit_new + torch.rand_like(logit_new) * 0.1 |
|
action = torch.randint(0, N, size=(B, )) |
|
value_new = torch.randn(B).requires_grad_(True) |
|
value_old = value_new + torch.rand_like(value_new) * 0.1 |
|
adv = torch.rand(B) |
|
return_ = torch.randn(B) * 2 |
|
data = ppo_data(logit_new, logit_old, action, value_new, value_old, adv, return_, weight) |
|
loss, info = ppo_error(data, use_value_clip=use_value_clip, dual_clip=dual_clip) |
|
assert all([l.shape == tuple() for l in loss]) |
|
assert all([np.isscalar(i) for i in info]) |
|
assert logit_new.grad is None |
|
assert value_new.grad is None |
|
total_loss = sum(loss) |
|
total_loss.backward() |
|
assert isinstance(logit_new.grad, torch.Tensor) |
|
assert isinstance(value_new.grad, torch.Tensor) |
|
|
|
|
|
@pytest.mark.unittest |
|
def test_mappo(): |
|
B, A, N = 4, 8, 32 |
|
logit_new = torch.randn(B, A, N).requires_grad_(True) |
|
logit_old = logit_new + torch.rand_like(logit_new) * 0.1 |
|
action = torch.randint(0, N, size=(B, A)) |
|
value_new = torch.randn(B, A).requires_grad_(True) |
|
value_old = value_new + torch.rand_like(value_new) * 0.1 |
|
adv = torch.rand(B, A) |
|
return_ = torch.randn(B, A) * 2 |
|
data = ppo_data(logit_new, logit_old, action, value_new, value_old, adv, return_, None) |
|
loss, info = ppo_error(data) |
|
assert all([l.shape == tuple() for l in loss]) |
|
assert all([np.isscalar(i) for i in info]) |
|
assert logit_new.grad is None |
|
assert value_new.grad is None |
|
total_loss = sum(loss) |
|
total_loss.backward() |
|
assert isinstance(logit_new.grad, torch.Tensor) |
|
assert isinstance(value_new.grad, torch.Tensor) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('use_value_clip, dual_clip, weight', args) |
|
def test_ppo_error_continous(use_value_clip, dual_clip, weight): |
|
B, N = 4, 6 |
|
mu_sigma_new = {'mu': torch.rand(B, N).requires_grad_(True), 'sigma': torch.rand(B, N).requires_grad_(True)} |
|
mu_sigma_old = { |
|
'mu': mu_sigma_new['mu'] + torch.rand_like(mu_sigma_new['mu']) * 0.1, |
|
'sigma': mu_sigma_new['sigma'] + torch.rand_like(mu_sigma_new['sigma']) * 0.1 |
|
} |
|
action = torch.rand(B, N) |
|
value_new = torch.randn(B).requires_grad_(True) |
|
value_old = value_new + torch.rand_like(value_new) * 0.1 |
|
adv = torch.rand(B) |
|
return_ = torch.randn(B) * 2 |
|
data = ppo_data(mu_sigma_new, mu_sigma_old, action, value_new, value_old, adv, return_, weight) |
|
loss, info = ppo_error_continuous(data, use_value_clip=use_value_clip, dual_clip=dual_clip) |
|
assert all([l.shape == tuple() for l in loss]) |
|
assert all([np.isscalar(i) for i in info]) |
|
assert mu_sigma_new['mu'].grad is None |
|
assert value_new.grad is None |
|
total_loss = sum(loss) |
|
total_loss.backward() |
|
assert isinstance(mu_sigma_new['mu'].grad, torch.Tensor) |
|
assert isinstance(value_new.grad, torch.Tensor) |
|
|