|
import itertools |
|
import numpy as np |
|
import copy |
|
import torch |
|
from torch import nn |
|
|
|
from ding.utils import WORLD_MODEL_REGISTRY |
|
from ding.utils.data import default_collate |
|
from ding.world_model.base_world_model import HybridWorldModel |
|
from ding.world_model.model.ensemble import EnsembleModel, StandardScaler |
|
from ding.torch_utils import fold_batch, unfold_batch, unsqueeze_repeat |
|
|
|
|
|
@WORLD_MODEL_REGISTRY.register('mbpo') |
|
class MBPOWorldModel(HybridWorldModel, nn.Module): |
|
config = dict( |
|
model=dict( |
|
ensemble_size=7, |
|
elite_size=5, |
|
state_size=None, |
|
action_size=None, |
|
reward_size=1, |
|
hidden_size=200, |
|
use_decay=False, |
|
batch_size=256, |
|
holdout_ratio=0.2, |
|
max_epochs_since_update=5, |
|
deterministic_rollout=True, |
|
), |
|
) |
|
|
|
def __init__(self, cfg, env, tb_logger): |
|
HybridWorldModel.__init__(self, cfg, env, tb_logger) |
|
nn.Module.__init__(self) |
|
|
|
cfg = cfg.model |
|
self.ensemble_size = cfg.ensemble_size |
|
self.elite_size = cfg.elite_size |
|
self.state_size = cfg.state_size |
|
self.action_size = cfg.action_size |
|
self.reward_size = cfg.reward_size |
|
self.hidden_size = cfg.hidden_size |
|
self.use_decay = cfg.use_decay |
|
self.batch_size = cfg.batch_size |
|
self.holdout_ratio = cfg.holdout_ratio |
|
self.max_epochs_since_update = cfg.max_epochs_since_update |
|
self.deterministic_rollout = cfg.deterministic_rollout |
|
|
|
self.ensemble_model = EnsembleModel( |
|
self.state_size, |
|
self.action_size, |
|
self.reward_size, |
|
self.ensemble_size, |
|
self.hidden_size, |
|
use_decay=self.use_decay |
|
) |
|
self.scaler = StandardScaler(self.state_size + self.action_size) |
|
|
|
if self._cuda: |
|
self.cuda() |
|
|
|
self.ensemble_mse_losses = [] |
|
self.model_variances = [] |
|
self.elite_model_idxes = [] |
|
|
|
def step(self, obs, act, batch_size=8192, keep_ensemble=False): |
|
if len(act.shape) == 1: |
|
act = act.unsqueeze(1) |
|
if self._cuda: |
|
obs = obs.cuda() |
|
act = act.cuda() |
|
inputs = torch.cat([obs, act], dim=-1) |
|
if keep_ensemble: |
|
inputs, dim = fold_batch(inputs, 1) |
|
inputs = self.scaler.transform(inputs) |
|
inputs = unfold_batch(inputs, dim) |
|
else: |
|
inputs = self.scaler.transform(inputs) |
|
|
|
ensemble_mean, ensemble_var = [], [] |
|
batch_dim = 0 if len(inputs.shape) == 2 else 1 |
|
for i in range(0, inputs.shape[batch_dim], batch_size): |
|
if keep_ensemble: |
|
|
|
input = inputs[:, i:i + batch_size] |
|
else: |
|
|
|
input = unsqueeze_repeat(inputs[i:i + batch_size], self.ensemble_size) |
|
b_mean, b_var = self.ensemble_model(input, ret_log_var=False) |
|
ensemble_mean.append(b_mean) |
|
ensemble_var.append(b_var) |
|
ensemble_mean = torch.cat(ensemble_mean, 1) |
|
ensemble_var = torch.cat(ensemble_var, 1) |
|
if keep_ensemble: |
|
ensemble_mean[:, :, 1:] += obs |
|
else: |
|
ensemble_mean[:, :, 1:] += obs.unsqueeze(0) |
|
ensemble_std = ensemble_var.sqrt() |
|
|
|
if self.deterministic_rollout: |
|
ensemble_sample = ensemble_mean |
|
else: |
|
ensemble_sample = ensemble_mean + torch.randn_like(ensemble_mean).to(ensemble_mean) * ensemble_std |
|
if keep_ensemble: |
|
|
|
rewards, next_obs = ensemble_sample[:, :, 0], ensemble_sample[:, :, 1:] |
|
next_obs_flatten, dim = fold_batch(next_obs) |
|
done = unfold_batch(self.env.termination_fn(next_obs_flatten), dim) |
|
return rewards, next_obs, done |
|
|
|
model_idxes = torch.from_numpy(np.random.choice(self.elite_model_idxes, size=len(obs))).to(inputs.device) |
|
batch_idxes = torch.arange(len(obs)).to(inputs.device) |
|
sample = ensemble_sample[model_idxes, batch_idxes] |
|
rewards, next_obs = sample[:, 0], sample[:, 1:] |
|
|
|
return rewards, next_obs, self.env.termination_fn(next_obs) |
|
|
|
def eval(self, env_buffer, envstep, train_iter): |
|
data = env_buffer.sample(self.eval_freq, train_iter) |
|
data = default_collate(data) |
|
data['done'] = data['done'].float() |
|
data['weight'] = data.get('weight', None) |
|
obs = data['obs'] |
|
action = data['action'] |
|
reward = data['reward'] |
|
next_obs = data['next_obs'] |
|
if len(reward.shape) == 1: |
|
reward = reward.unsqueeze(1) |
|
if len(action.shape) == 1: |
|
action = action.unsqueeze(1) |
|
|
|
|
|
inputs = torch.cat([obs, action], dim=1) |
|
labels = torch.cat([reward, next_obs - obs], dim=1) |
|
if self._cuda: |
|
inputs = inputs.cuda() |
|
labels = labels.cuda() |
|
|
|
|
|
inputs = self.scaler.transform(inputs) |
|
|
|
|
|
inputs = unsqueeze_repeat(inputs, self.ensemble_size) |
|
labels = unsqueeze_repeat(labels, self.ensemble_size) |
|
|
|
|
|
with torch.no_grad(): |
|
mean, logvar = self.ensemble_model(inputs, ret_log_var=True) |
|
loss, mse_loss = self.ensemble_model.loss(mean, logvar, labels) |
|
ensemble_mse_loss = torch.pow(mean.mean(0) - labels[0], 2) |
|
model_variance = mean.var(0) |
|
self.tb_logger.add_scalar('env_model_step/eval_mse_loss', mse_loss.mean().item(), envstep) |
|
self.tb_logger.add_scalar('env_model_step/eval_ensemble_mse_loss', ensemble_mse_loss.mean().item(), envstep) |
|
self.tb_logger.add_scalar('env_model_step/eval_model_variances', model_variance.mean().item(), envstep) |
|
|
|
self.last_eval_step = envstep |
|
|
|
def train(self, env_buffer, envstep, train_iter): |
|
data = env_buffer.sample(env_buffer.count(), train_iter) |
|
data = default_collate(data) |
|
data['done'] = data['done'].float() |
|
data['weight'] = data.get('weight', None) |
|
obs = data['obs'] |
|
action = data['action'] |
|
reward = data['reward'] |
|
next_obs = data['next_obs'] |
|
if len(reward.shape) == 1: |
|
reward = reward.unsqueeze(1) |
|
if len(action.shape) == 1: |
|
action = action.unsqueeze(1) |
|
|
|
inputs = torch.cat([obs, action], dim=1) |
|
labels = torch.cat([reward, next_obs - obs], dim=1) |
|
if self._cuda: |
|
inputs = inputs.cuda() |
|
labels = labels.cuda() |
|
|
|
logvar = self._train(inputs, labels) |
|
self.last_train_step = envstep |
|
|
|
if self.tb_logger is not None: |
|
for k, v in logvar.items(): |
|
self.tb_logger.add_scalar('env_model_step/' + k, v, envstep) |
|
|
|
def _train(self, inputs, labels): |
|
|
|
num_holdout = int(inputs.shape[0] * self.holdout_ratio) |
|
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:] |
|
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout] |
|
|
|
|
|
self.scaler.fit(train_inputs) |
|
train_inputs = self.scaler.transform(train_inputs) |
|
holdout_inputs = self.scaler.transform(holdout_inputs) |
|
|
|
|
|
holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size) |
|
holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size) |
|
|
|
self._epochs_since_update = 0 |
|
self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)} |
|
self._save_states() |
|
for epoch in itertools.count(): |
|
|
|
train_idx = torch.stack([torch.randperm(train_inputs.shape[0]) |
|
for _ in range(self.ensemble_size)]).to(train_inputs.device) |
|
self.mse_loss = [] |
|
for start_pos in range(0, train_inputs.shape[0], self.batch_size): |
|
idx = train_idx[:, start_pos:start_pos + self.batch_size] |
|
train_input = train_inputs[idx] |
|
train_label = train_labels[idx] |
|
mean, logvar = self.ensemble_model(train_input, ret_log_var=True) |
|
loss, mse_loss = self.ensemble_model.loss(mean, logvar, train_label) |
|
self.ensemble_model.train(loss) |
|
self.mse_loss.append(mse_loss.mean().item()) |
|
self.mse_loss = sum(self.mse_loss) / len(self.mse_loss) |
|
|
|
with torch.no_grad(): |
|
holdout_mean, holdout_logvar = self.ensemble_model(holdout_inputs, ret_log_var=True) |
|
_, holdout_mse_loss = self.ensemble_model.loss(holdout_mean, holdout_logvar, holdout_labels) |
|
self.curr_holdout_mse_loss = holdout_mse_loss.mean().item() |
|
break_train = self._save_best(epoch, holdout_mse_loss) |
|
if break_train: |
|
break |
|
|
|
self._load_states() |
|
with torch.no_grad(): |
|
holdout_mean, holdout_logvar = self.ensemble_model(holdout_inputs, ret_log_var=True) |
|
_, holdout_mse_loss = self.ensemble_model.loss(holdout_mean, holdout_logvar, holdout_labels) |
|
sorted_loss, sorted_loss_idx = holdout_mse_loss.sort() |
|
sorted_loss = sorted_loss.detach().cpu().numpy().tolist() |
|
sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist() |
|
self.elite_model_idxes = sorted_loss_idx[:self.elite_size] |
|
self.top_holdout_mse_loss = sorted_loss[0] |
|
self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2] |
|
self.bottom_holdout_mse_loss = sorted_loss[-1] |
|
self.best_holdout_mse_loss = holdout_mse_loss.mean().item() |
|
return { |
|
'mse_loss': self.mse_loss, |
|
'curr_holdout_mse_loss': self.curr_holdout_mse_loss, |
|
'best_holdout_mse_loss': self.best_holdout_mse_loss, |
|
'top_holdout_mse_loss': self.top_holdout_mse_loss, |
|
'middle_holdout_mse_loss': self.middle_holdout_mse_loss, |
|
'bottom_holdout_mse_loss': self.bottom_holdout_mse_loss, |
|
} |
|
|
|
def _save_states(self, ): |
|
self._states = copy.deepcopy(self.state_dict()) |
|
|
|
def _save_state(self, id): |
|
state_dict = self.state_dict() |
|
for k, v in state_dict.items(): |
|
if 'weight' in k or 'bias' in k: |
|
self._states[k].data[id] = copy.deepcopy(v.data[id]) |
|
|
|
def _load_states(self): |
|
self.load_state_dict(self._states) |
|
|
|
def _save_best(self, epoch, holdout_losses): |
|
updated = False |
|
for i in range(len(holdout_losses)): |
|
current = holdout_losses[i] |
|
_, best = self._snapshots[i] |
|
improvement = (best - current) / best |
|
if improvement > 0.01: |
|
self._snapshots[i] = (epoch, current) |
|
self._save_state(i) |
|
|
|
updated = True |
|
|
|
|
|
if updated: |
|
self._epochs_since_update = 0 |
|
else: |
|
self._epochs_since_update += 1 |
|
return self._epochs_since_update > self.max_epochs_since_update |
|
|