zjowowen's picture
init space
079c32c
from typing import Any, List, Union, Optional
import time
import gym
import copy
import numpy as np
from easydict import EasyDict
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY
from ding.envs import ObsPlusPrevActRewWrapper
@ENV_REGISTRY.register('acrobot')
class AcroBotEnv(BaseEnv):
def __init__(self, cfg: dict = {}) -> None:
self._cfg = cfg
self._init_flag = False
self._replay_path = None
self._observation_space = gym.spaces.Box(
low=np.array([-1.0, -1.0, -1.0, -1.0, -12.57, -28.27]),
high=np.array([1.0, 1.0, 1.0, 1.0, 12.57, 28.27]),
shape=(6, ),
dtype=np.float32
)
self._action_space = gym.spaces.Discrete(3)
self._action_space.seed(0) # default seed
self._reward_space = gym.spaces.Box(low=-1.0, high=0.0, shape=(1, ), dtype=np.float32)
def reset(self) -> np.ndarray:
if not self._init_flag:
self._env = gym.make('Acrobot-v1')
if self._replay_path is not None:
self._env = gym.wrappers.RecordVideo(
self._env,
video_folder=self._replay_path,
episode_trigger=lambda episode_id: True,
name_prefix='rl-video-{}'.format(id(self))
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
self._action_space.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
self._action_space.seed(self._seed)
self._observation_space = self._env.observation_space
self._eval_episode_return = 0
obs = self._env.reset()
obs = to_ndarray(obs)
return obs
def close(self) -> None:
if self._init_flag:
self._env.close()
self._init_flag = False
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep:
if isinstance(action, np.ndarray) and action.shape == (1, ):
action = action.squeeze() # 0-dim array
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
if done:
info['eval_episode_return'] = self._eval_episode_return
obs = to_ndarray(obs)
rew = to_ndarray([rew]).astype(np.float32) # wrapped to be transfered to a array with shape (1,)
return BaseEnvTimestep(obs, rew, done, info)
def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
if replay_path is None:
replay_path = './video'
self._replay_path = replay_path
def random_action(self) -> np.ndarray:
random_action = self.action_space.sample()
random_action = to_ndarray([random_action], dtype=np.int64)
return random_action
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
def __repr__(self) -> str:
return "DI-engine Acrobot Env"