|
import os |
|
import gym |
|
from tensorboardX import SummaryWriter |
|
from easydict import EasyDict |
|
from copy import deepcopy |
|
|
|
from ding.config import compile_config |
|
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer |
|
from ding.envs import BaseEnvManager, DingEnvWrapper |
|
from ding.policy import PPGOffPolicy |
|
from ding.model import PPG |
|
from ding.utils import set_pkg_seed, deep_merge_dicts |
|
from dizoo.classic_control.cartpole.config.cartpole_ppg_config import cartpole_ppg_config |
|
|
|
|
|
def wrapped_cartpole_env(): |
|
return DingEnvWrapper( |
|
gym.make('CartPole-v0'), |
|
EasyDict(env_wrapper='default'), |
|
) |
|
|
|
|
|
def main(cfg, seed=0, max_train_iter=int(1e8), max_env_step=int(1e8)): |
|
cfg = compile_config( |
|
cfg, |
|
BaseEnvManager, |
|
PPGOffPolicy, |
|
BaseLearner, |
|
SampleSerialCollector, |
|
InteractionSerialEvaluator, { |
|
'policy': AdvancedReplayBuffer, |
|
'value': AdvancedReplayBuffer |
|
}, |
|
save_cfg=True |
|
) |
|
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num |
|
collector_env = BaseEnvManager(env_fn=[wrapped_cartpole_env for _ in range(collector_env_num)], cfg=cfg.env.manager) |
|
evaluator_env = BaseEnvManager(env_fn=[wrapped_cartpole_env for _ in range(evaluator_env_num)], cfg=cfg.env.manager) |
|
|
|
collector_env.seed(seed) |
|
evaluator_env.seed(seed, dynamic_seed=False) |
|
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = PPG(**cfg.policy.model) |
|
policy = PPGOffPolicy(cfg.policy, model=model) |
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
collector = SampleSerialCollector( |
|
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
policy_buffer = AdvancedReplayBuffer( |
|
cfg.policy.other.replay_buffer.policy, tb_logger, exp_name=cfg.exp_name, instance_name='policy_buffer' |
|
) |
|
value_buffer = AdvancedReplayBuffer( |
|
cfg.policy.other.replay_buffer.value, tb_logger, exp_name=cfg.exp_name, instance_name='value_buffer' |
|
) |
|
|
|
while True: |
|
if evaluator.should_eval(learner.train_iter): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) |
|
if stop: |
|
break |
|
new_data = collector.collect(train_iter=learner.train_iter) |
|
policy_buffer.push(new_data, cur_collector_envstep=collector.envstep) |
|
value_buffer.push(deepcopy(new_data), cur_collector_envstep=collector.envstep) |
|
for i in range(cfg.policy.learn.update_per_collect): |
|
batch_size = learner.policy.get_attribute('batch_size') |
|
policy_data = policy_buffer.sample(batch_size['policy'], learner.train_iter) |
|
value_data = value_buffer.sample(batch_size['value'], learner.train_iter) |
|
if policy_data is not None and value_data is not None: |
|
train_data = {'policy': policy_data, 'value': value_data} |
|
learner.train(train_data, collector.envstep) |
|
policy_buffer.clear() |
|
value_buffer.clear() |
|
if learner.train_iter >= max_train_iter or collector.envstep >= max_env_step: |
|
break |
|
|
|
|
|
if __name__ == "__main__": |
|
main(cartpole_ppg_config) |
|
|