zjowowen's picture
init space
079c32c
from typing import List
import copy
import numpy as np
import gym
from gym import spaces
from gym.utils import seeding
from ding.envs import BaseEnvTimestep
from ding.utils import ENV_REGISTRY
@ENV_REGISTRY.register('maze')
class Maze(gym.Env):
"""
Environment with random maze layouts. The ASCII representation of the mazes include the following objects:
- `<SPACE>`: empty
- `x`: wall
- `S`: the start location (optional)
- `T`: the target location.
"""
KEY_EMPTY = 0
KEY_WALL = 1
KEY_TARGET = 2
KEY_START = 3
ASCII_MAP = {
KEY_EMPTY: ' ',
KEY_WALL: 'x',
KEY_TARGET: 'T',
KEY_START: 'S',
}
def __init__(
self,
cfg,
):
self._size = cfg.size
self._init_flag = False
self._random_start = True
self._seed = None
self._step = 0
def reset(self):
self.active_init()
obs = self._get_obs()
self._step = 0
return self.process_states(obs, self.get_maze_map())
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def active_init(
self,
tabular_obs=False,
reward_fn=lambda x, y, tx, ty: 1 if (x == tx and y == ty) else 0,
done_fn=lambda x, y, tx, ty: x == tx and y == ty
):
self._maze = self.generate_maze(self.size, self._seed, 'tunnel')
self._num_maze_keys = len(Maze.ASCII_MAP.keys())
nav_map = self.maze_to_ascii(self._maze)
self._map = nav_map
self._tabular_obs = tabular_obs
self._reward_fn = reward_fn
self._done_fn = done_fn
if self._reward_fn is None:
self._reward_fn = lambda x, y, tx, ty: float(x == tx and y == ty)
if self._done_fn is None:
self._done_fn = lambda x, y, tx, ty: False
self._max_x = len(self._map)
if not self._max_x:
raise ValueError('Invalid map.')
self._max_y = len(self._map[0])
if not all(len(m) == self._max_y for m in self._map):
raise ValueError('Invalid map.')
self._start_x, self._start_y = self._find_initial_point()
self._target_x, self._target_y = self._find_target_point()
self._x, self._y = self._start_x, self._start_y
self._n_state = self._max_x * self._max_y
self._n_action = 4
if self._tabular_obs:
self.observation_space = spaces.Discrete(self._n_state)
else:
self.observation_space = spaces.Box(low=0.0, high=np.inf, shape=(16, 16, 3))
self.action_space = spaces.Discrete(self._n_action)
self.reward_space = spaces.Box(low=0, high=1, shape=(1, ), dtype=np.float32)
def random_start(self):
init_x, init_y = self._x, self._y
while True: # Find empty grid cell.
self._x = self.np_random.integers(self._max_x)
self._y = self.np_random.integers(self._max_y)
if self._map[self._x][self._y] != 'x':
break
ret = copy.deepcopy(self.process_states(self._get_obs(), self.get_maze_map()))
self._x, self._y = init_x, init_y
return ret
def close(self) -> None:
if self._init_flag:
self._env.close()
self._init_flag = False
@property
def num_maze_keys(self):
return self._num_maze_keys
@property
def size(self):
return self._size
def process_states(self, observations, maze_maps):
"""Returns [B, W, W, 3] binary values. Channels are (wall; goal; obs)"""
loc = np.eye(self._size * self._size, dtype=np.int64)[observations[0] * self._size + observations[1]]
loc = np.reshape(loc, [self._size, self._size])
maze_maps = maze_maps.astype(np.int64)
states = np.concatenate([maze_maps, loc[Ellipsis, None]], axis=-1, dtype=np.int64)
return states
def get_maze_map(self, stacked=True):
if not stacked:
return self._maze.copy()
wall = self._maze.copy()
target_x, target_y = self.target_location
assert wall[target_x][target_y] == Maze.KEY_TARGET
wall[target_x][target_y] = 0
target = np.zeros((self._size, self._size))
target[target_x][target_y] = 1
assert wall[self._start_x][self._start_y] == Maze.KEY_START
wall[self._start_x][self._start_y] = 0
return np.stack([wall, target], axis=-1)
def generate_maze(self, size, seed, wall_type):
rng, _ = seeding.np_random(seed)
maze = np.full((size, size), fill_value=Maze.KEY_EMPTY, dtype=int)
if wall_type == 'none':
maze[[0, -1], :] = Maze.KEY_WALL
maze[:, [0, -1]] = Maze.KEY_WALL
elif wall_type == 'tunnel':
self.sample_wall(maze, rng)
elif wall_type.startswith('blocks:'):
maze[[0, -1], :] = Maze.KEY_WALL
maze[:, [0, -1]] = Maze.KEY_WALL
self.sample_blocks(maze, rng, int(wall_type.split(':')[-1]))
else:
raise ValueError('Unknown wall type: %s' % wall_type)
loc_target = self.sample_location(maze, rng)
maze[loc_target] = Maze.KEY_TARGET
loc_start = self.sample_location(maze, rng)
maze[loc_start] = Maze.KEY_START
self._start_x, self._start_y = loc_start
return maze
def sample_blocks(self, maze, rng, num_blocks):
"""Sample single-block 'wall' or 'obstacles'."""
for _ in range(num_blocks):
loc = self.sample_location(maze, rng)
maze[loc] = Maze.KEY_WALL
def sample_wall(
self, maze, rng, shortcut_prob=0.1, inner_wall_thickness=1, outer_wall_thickness=1, corridor_thickness=2
):
room = maze
# step 1: fill everything as wall
room[:] = Maze.KEY_WALL
# step 2: prepare
# we move two pixels at a time, because the walls are also occupying pixels
delta = inner_wall_thickness + corridor_thickness
dx = [delta, -delta, 0, 0]
dy = [0, 0, delta, -delta]
def get_loc_type(y, x):
# remember there is a outside wall of 1 pixel surrounding the room
if (y < outer_wall_thickness or y + corridor_thickness - 1 >= room.shape[0] - outer_wall_thickness):
return 'invalid'
if (x < outer_wall_thickness or x + corridor_thickness - 1 >= room.shape[1] - outer_wall_thickness):
return 'invalid'
# already visited
if room[y, x] == Maze.KEY_EMPTY:
return 'occupied'
return 'valid'
def connect_pixel(y, x, ny, nx):
pixel = Maze.KEY_EMPTY
if ny == y:
room[y:y + corridor_thickness, min(x, nx):max(x, nx) + corridor_thickness] = pixel
else:
room[min(y, ny):max(y, ny) + corridor_thickness, x:x + corridor_thickness] = pixel
def carve_passage_from(y, x):
room[y, x] = Maze.KEY_EMPTY
for direction in rng.permutation(len(dx)):
ny = y + dy[direction]
nx = x + dx[direction]
loc_type = get_loc_type(ny, nx)
if loc_type == 'invalid':
continue
elif loc_type == 'valid':
connect_pixel(y, x, ny, nx)
# recursion
carve_passage_from(ny, nx)
else:
# occupied
# we create shortcut with some probability, this is because
# we do not want to restrict to only one feasible path.
if rng.random() < shortcut_prob:
connect_pixel(y, x, ny, nx)
carve_passage_from(outer_wall_thickness, outer_wall_thickness)
def sample_location(self, maze, rng):
for _ in range(1000):
x, y = rng.integers(low=1, high=self._size, size=2)
if maze[x, y] == Maze.KEY_EMPTY:
return x, y
raise ValueError('Cannot sample empty location, make maze bigger?')
@staticmethod
def key_to_ascii(key):
if key in Maze.ASCII_MAP:
return Maze.ASCII_MAP[key]
assert (Maze.KEY_OBJ <= key < Maze.KEY_OBJ + Maze.MAX_OBJ_TYPES)
return chr(ord('1') + key - Maze.KEY_OBJ)
def maze_to_ascii(self, maze):
return [[Maze.key_to_ascii(x) for x in row] for row in maze]
def tabular_obs_action(self, status_obs, action, include_maze_layout=False):
tabular_obs = self.get_tabular_obs(status_obs)
multiplier = self._n_action
if include_maze_layout:
multiplier += self._num_maze_keys
return multiplier * tabular_obs + action
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
cfg.is_train = True
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
cfg.is_train = False
return [cfg for _ in range(evaluator_env_num)]
@property
def nav_map(self):
return self._map
@property
def n_state(self):
return self._n_state
@property
def n_action(self):
return self._n_action
@property
def target_location(self):
return self._target_x, self._target_y
@property
def tabular_obs(self):
return self._tabular_obs
def _find_initial_point(self):
for x in range(self._max_x):
for y in range(self._max_y):
if self._map[x][y] == 'S':
break
if self._map[x][y] == 'S':
break
else:
return None, None
return x, y
def _find_target_point(self):
for x in range(self._max_x):
for y in range(self._max_y):
if self._map[x][y] == 'T':
break
if self._map[x][y] == 'T':
break
else:
raise ValueError('Target point not found in map.')
return x, y
def _get_obs(self):
if self._tabular_obs:
return self._x * self._max_y + self._y
else:
return np.array([self._x, self._y])
def get_tabular_obs(self, status_obs):
return self._max_y * status_obs[..., 0] + status_obs[..., 1]
def get_xy(self, state):
x = state / self._max_y
y = state % self._max_y
return x, y
def step(self, action):
last_x, last_y = self._x, self._y
if action == 0:
if self._x < self._max_x - 1:
self._x += 1
elif action == 1:
if self._y < self._max_y - 1:
self._y += 1
elif action == 2:
if self._x > 0:
self._x -= 1
elif action == 3:
if self._y > 0:
self._y -= 1
if self._map[self._x][self._y] == 'x':
self._x, self._y = last_x, last_y
self._step += 1
reward = self._reward_fn(self._x, self._y, self._target_x, self._target_y)
done = self._done_fn(self._x, self._y, self._target_x, self._target_y)
info = {}
if self._step > 100:
done = True
if done:
info['final_eval_reward'] = reward
info['eval_episode_return'] = reward
return BaseEnvTimestep(self.process_states(self._get_obs(), self.get_maze_map()), reward, done, info)
def get_value_map(env):
"""Returns [W, W, A] one-hot VI actions."""
target_location = env.target_location
nav_map = env.nav_map
current_points = [target_location]
chosen_actions = {target_location: 0}
visited_points = {target_location: True}
while current_points:
next_points = []
for point_x, point_y in current_points:
for (action, (next_point_x, next_point_y)) in [(0, (point_x - 1, point_y)), (1, (point_x, point_y - 1)),
(2, (point_x + 1, point_y)), (3, (point_x, point_y + 1))]:
if (next_point_x, next_point_y) in visited_points:
continue
if not (0 <= next_point_x < len(nav_map) and 0 <= next_point_y < len(nav_map[next_point_x])):
continue
if nav_map[next_point_x][next_point_y] == 'x':
continue
next_points.append((next_point_x, next_point_y))
visited_points[(next_point_x, next_point_y)] = True
chosen_actions[(next_point_x, next_point_y)] = action
current_points = next_points
value_map = np.zeros([env.size, env.size, env.n_action])
for (x, y), action in chosen_actions.items():
value_map[x][y][action] = 1
return value_map