|
from easydict import EasyDict |
|
|
|
halfCheetah_trex_ppo_config = dict( |
|
exp_name='halfcheetah_trex_onppo_seed0', |
|
env=dict( |
|
env_id='HalfCheetah-v3', |
|
norm_obs=dict(use_norm=False, ), |
|
norm_reward=dict(use_norm=False, ), |
|
collector_env_num=8, |
|
evaluator_env_num=10, |
|
n_evaluator_episode=10, |
|
stop_value=3000, |
|
), |
|
reward_model=dict( |
|
min_snippet_length=30, |
|
max_snippet_length=100, |
|
checkpoint_min=10000, |
|
checkpoint_max=90000, |
|
checkpoint_step=10000, |
|
num_snippets=60000, |
|
learning_rate=1e-5, |
|
update_per_collect=1, |
|
|
|
|
|
|
|
|
|
expert_model_path='model_path_placeholder', |
|
|
|
reward_model_path='data_path_placeholder + /HalfCheetah.params', |
|
|
|
|
|
|
|
|
|
data_path='data_path_placeholder', |
|
), |
|
policy=dict( |
|
cuda=True, |
|
recompute_adv=True, |
|
model=dict( |
|
obs_shape=17, |
|
action_shape=6, |
|
action_space='continuous', |
|
), |
|
action_space='continuous', |
|
learn=dict( |
|
epoch_per_collect=10, |
|
batch_size=64, |
|
learning_rate=3e-4, |
|
value_weight=0.5, |
|
entropy_weight=0.0, |
|
clip_ratio=0.2, |
|
adv_norm=True, |
|
value_norm=True, |
|
|
|
|
|
|
|
|
|
ignore_done=True, |
|
grad_clip_type='clip_norm', |
|
grad_clip_value=0.5, |
|
), |
|
collect=dict( |
|
n_sample=2048, |
|
unroll_len=1, |
|
discount_factor=0.99, |
|
gae_lambda=0.97, |
|
), |
|
eval=dict(evaluator=dict(eval_freq=5000, )), |
|
), |
|
) |
|
halfCheetah_trex_ppo_config = EasyDict(halfCheetah_trex_ppo_config) |
|
main_config = halfCheetah_trex_ppo_config |
|
|
|
halfCheetah_trex_ppo_create_config = dict( |
|
env=dict( |
|
type='mujoco', |
|
import_names=['dizoo.mujoco.envs.mujoco_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='ppo', ), |
|
reward_model=dict(type='trex'), |
|
) |
|
halfCheetah_trex_ppo_create_config = EasyDict(halfCheetah_trex_ppo_create_config) |
|
create_config = halfCheetah_trex_ppo_create_config |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
import argparse |
|
import torch |
|
from ding.entry import trex_collecting_data |
|
from ding.entry import serial_pipeline_trex_onpolicy |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--cfg', type=str, default='please enter abs path for this file') |
|
parser.add_argument('--seed', type=int, default=0) |
|
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') |
|
args = parser.parse_args() |
|
|
|
trex_collecting_data(args) |
|
serial_pipeline_trex_onpolicy([main_config, create_config]) |
|
|