test / app.py
zhaokeyao1
Update space
66877e4
raw
history blame
3.43 kB
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from new_chat import Conversation, ChatgptAPI
chat_api = ChatgptAPI()
def predict(system_input, password_input, user_in_file, user_input, conversation):
if password_input != '112233':
return [(None, "Wrong password!")], conversation, user_input
if conversation.is_initialized() == False:
conversation = Conversation(system_input, 5)
conversation = chat_api.get_single_round_completion(user_in_file, user_input, conversation)
return conversation, conversation, None
#_, conversation = chat_api.get_multi_round_completion(user_input, conversation)
#return conversation.get_history_messages(), conversation, None
def clear_history(conversation):
conversation.clear()
return None, conversation
with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:600px}") as demo:
chatbot = gr.Chatbot(elem_id="chatbot")
conversation = gr.State(value=Conversation())
with gr.Row():
system_in_txt = gr.Textbox(lines=1, label="System role content:", placeholder="Enter system role content")
password_in_txt = gr.Textbox(lines=1, label="Password:", placeholder="Enter password")
with gr.Row():
user_in_file = gr.File(label="Upload File")
user_in_txt = gr.Textbox(lines=3, label="User role content:", placeholder="Enter text...").style(container=False)
with gr.Row():
submit_button = gr.Button("Submit")
reset_button = gr.Button("Reset")
submit_button.click(predict, [system_in_txt, password_in_txt, user_in_file, user_in_txt, conversation], [chatbot, conversation, user_in_txt])
reset_button.click(clear_history, [conversation], [chatbot, conversation], queue=False)
'''
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
'''
if __name__ == "__main__":
demo.launch()