File size: 3,573 Bytes
f33940c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from PIL import Image
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation

feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
model = SegformerForSemanticSegmentation.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")

def sidewalk_palette():
    """Sidewalk palette that maps each class to RGB values."""
    return [
        [0, 0, 0],
        [216, 82, 24],
        [255, 255, 0],
        [125, 46, 141],
        [118, 171, 47],
        [161, 19, 46],
        [255, 0, 0],
        [0, 128, 128],
        [190, 190, 0],
        [0, 255, 0],
        [0, 0, 255],
        [170, 0, 255],
        [84, 84, 0],
        [84, 170, 0],
        [84, 255, 0],
        [170, 84, 0],
        [170, 170, 0],
        [170, 255, 0],
        [255, 84, 0],
        [255, 170, 0],
        [255, 255, 0],
        [33, 138, 200],
        [0, 170, 127],
        [0, 255, 127],
        [84, 0, 127],
        [84, 84, 127],
        [84, 170, 127],
        [84, 255, 127],
        [170, 0, 127],
        [170, 84, 127],
        [170, 170, 127],
        [170, 255, 127],
        [255, 0, 127],
        [255, 84, 127],
        [255, 170, 127],
    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    labels_list.extend(line[:-1] for line in fp)

colormap = np.asarray(sidewalk_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")

    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')

    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def main(input_img):
	input_img = Image.fromarray(input_img)

	inputs = feature_extractor(images=input_img, return_tensors="pt")
	outputs = model(**inputs)
	logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)

	# First, rescale logits to original image size
	upsampled_logits = nn.functional.interpolate(
		logits,
		size=input_img.size[::-1], # (height, width)
		mode='bilinear',
		align_corners=False
	)

	# Second, apply argmax on the class dimension
	pred_seg = upsampled_logits.argmax(dim=1)[0]

	color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) # height, width, 3
	palette = np.array(sidewalk_palette())
	for label, color in enumerate(palette):
		color_seg[pred_seg == label, :] = color

	# Show image + mask
	img = np.array(input_img) * 0.5 + color_seg * 0.5
	pred_img = img.astype(np.uint8)    

	return draw_plot(pred_img, pred_seg)

demo = gr.Interface(main, 
                    gr.Image(shape=(200, 200)), 
                    outputs=['plot'], 
					examples=["test.jpg"],
                    allow_flagging='never')

demo.launch()