Medical_chatbot / app.py
zouvizou's picture
Create app.py
c3b9937 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Charger le modèle et le tokenizer
model_name = "MaziyarPanahi/BioMistral-7B-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(inputs['input_ids'], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def add_message(history, message):
if message["text"] is not None:
history.append((message["text"], None))
for x in message["files"]:
history.append(((x,), None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def bot(history):
if history and history[-1][0]:
history[-1] = (history[-1][0], generate_response(history[-1][0]))
return history
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
# Création de l'interface Gradio avec le fond animé et des boutons stylisés
with gr.Blocks(css="""
.gradio-container {
background: url('https://st4.depositphotos.com/8211188/25405/v/450/depositphotos_254059962-stock-illustration-abstract-medical-background-with-flat.jpg')50% 50% no-repeat;
background-size: cover;
}
.chatbox-container {
max-width: 80%;
margin: 20px auto;
padding: 20px 20px;
background-color: rgb(39 150 160);
border-radius: 12px;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
display: flex;
flex-direction: row;
align-items: stretch;
}
.chatbox {
flex: 1;
overflow-y: auto;
padding: 10px;
display: flex;
flex-direction: column;
justify-content: flex-end;
border-bottom: 1px solid #e39d05;
height: 400px;
}
.chat-input-container {
display: flex;
flex-direction: column;
padding: 10px;
border-top: 1px solid #e39d05;
width: 100%;
}
.chat-input {
color:blue;
margin-bottom: 10px;
flex: 1;
border-radius: 5px;
border: 1px solid #e39d05;
padding: 10px;
font-size: 16px;
}
.button-container {
color:#e39d05;
display: flex;
flex-direction: row;
justify-content: flex-start;
}
.button {
background-color: #e39d05;
color: black;
border: none;
border-radius: 20px;
padding: 8px 16px;
margin: 12px;
cursor: pointer;
font-size: 20px;
display: flex;
align-items: center;
justify-content: center;
transition: background-color 0.3s, box-shadow 0.3s;
}
.button:hover {
background-color: #fa0a0a;
box-shadow: 0 4px 8px #e39d05;
}
.titre h1 {
font-family: 'Centaur', serif;
font-size: 4em;
margin: 0;
color: #ad2727;
text-align: center;
}
.titre p {
font-size: 3em;
font-family: 'Centaur', serif;
margin-top: 10px;
color: rgb(9 129 118);
text-align: center;
font-weight: bold;
}
.titre img{
display: block;
margin-left: auto;
margin-right: auto;
width: 20%;
}
""") as demo:
with gr.Row(elem_classes="titre"):
gr.Markdown("<h1>Diagnostique médicale</h1><p class='description'>Bienvenue ! Entrez vos symptômes ou questions pour des conseils médicaux rapides</p><img src='https://imageio.forbes.com/specials-images/imageserve/64b54b7467fcc06271e9bcff/Chatbot-in-a-medical-cap--a-pen-and-a-notebook-in-his-hands-asks-how-he-can-help-/960x0.jpg?height=592&width=711&fit=bounds'>")
with gr.Column(scale=1, elem_classes="chatbox-container"):
with gr.Row():
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
scale=1,
elem_classes="chatbox"
)
with gr.Row(elem_classes="chat-input-container"):
chat_input = gr.MultimodalTextbox(interactive=True,
file_count="multiple",
placeholder="Entrez un message ou téléchargez un fichier...",
show_label=False,
elem_classes="chat-input")
# Container for buttons below the input
with gr.Row(elem_classes="button-container"):
clear_button = gr.Button("Effacer", elem_classes="button")
stop_button = gr.Button("Arrêter", elem_classes="button")
generate_button = gr.Button("Générer", elem_classes="button")
# Configuration des interactions
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
clear_button.click(lambda: ([], gr.MultimodalTextbox(value=None, interactive=True)), None, [chatbot, chat_input])
stop_button.click(lambda: "Arrêter cliqué", None, None)
generate_button.click(lambda: "Générer cliqué", None, None)
save_button = gr.Button("Sauvegarder", elem_classes="button")
save_button.click(fn=lambda history: open("discussion_history.txt", "w").write(str(history)), inputs=chatbot, outputs=None)
# Lancement de l'interface
demo.launch()