File size: 14,161 Bytes
f19c4d0 f5a90bd f19c4d0 f5a90bd f19c4d0 f5a90bd f19c4d0 f5a90bd f19c4d0 f5a90bd f19c4d0 f5a90bd f19c4d0 f5a90bd 4dfbf7f f19c4d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f49242c9950>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49242c99e0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49242c9a70>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49242c9b00>",
"_build": "<function ActorCriticPolicy._build at 0x7f49242c9b90>",
"forward": "<function ActorCriticPolicy.forward at 0x7f49242c9c20>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49242c9cb0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f49242c9d40>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49242c9dd0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49242c9e60>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49242c9ef0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f4924319930>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 1,
"num_timesteps": 1000500,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1657797908.8459232,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgs8CjvSSEOT5SkwW9imv2vAcPTTxehrq8AAAAAAAAAACUdJRiLg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0004999999999999449,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5rD7juHtUUCUhpRSlIwBbJRN6AOMAXSUR0Cg0SmqPwNLdX2UKGgGaAloD0MI6UMX1LeGY0CUhpRSlGgVTVgCaBZHQKDTRn27FsJ1fZQoaAZoCWgPQwgnoImw4RRjQJSGlFKUaBVNmgJoFkdAoNWl1dPcjHV9lChoBmgJaA9DCISCUrRyaFTAlIaUUpRoFU1xAmgWR0Cg2JD7655JdX2UKGgGaAloD0MIrabria7/V8CUhpRSlGgVTXUCaBZHQKDap4xk/bF1fZQoaAZoCWgPQwgXD+85sIheQJSGlFKUaBVN2AJoFkdAoN4gxagVXXV9lChoBmgJaA9DCKSrdHed+mVAlIaUUpRoFU2EAmgWR0Cg4N9pItlJdX2UKGgGaAloD0MIaTaPw+A5YkCUhpRSlGgVTekCaBZHQKDlKcslLOB1fZQoaAZoCWgPQwir6uV3mvhmQJSGlFKUaBVNogJoFkdAoOgaFwkxAXV9lChoBmgJaA9DCNnts8rMcGNAlIaUUpRoFU2aAmgWR0Cg7APdl/YrdX2UKGgGaAloD0MIBtUGJ6LqWMCUhpRSlGgVTZEBaBZHQKDtjNRm9QJ1fZQoaAZoCWgPQwho7Es2Hg5dwJSGlFKUaBVNlQJoFkdAoPBfXoTwlXV9lChoBmgJaA9DCIYBS65iWWVAlIaUUpRoFU3AAmgWR0Cg9ACKBNEgdX2UKGgGaAloD0MIXhCRmnbZZECUhpRSlGgVTYECaBZHQKD2dTWGyop1fZQoaAZoCWgPQwi5ADRKl74rwJSGlFKUaBVN6ANoFkdAoPxxbdJrcnV9lChoBmgJaA9DCHVZTGw+92BAlIaUUpRoFU3RAmgWR0Cg/8+rdWQwdX2UKGgGaAloD0MInZ/iOPCNYkCUhpRSlGgVTfcCaBZHQKEED9Cu2Z11fZQoaAZoCWgPQwgB+RIquHxhwJSGlFKUaBVNCgJoFkdAoQW/ZTQ3P3V9lChoBmgJaA9DCKN2vwrw51fAlIaUUpRoFU1IAmgWR0ChCF5uZThpdX2UKGgGaAloD0MIQ67UsyBNaMCUhpRSlGgVTQcCaBZHQKEJ9QfIS151fZQoaAZoCWgPQwjEYP4KmYRdwJSGlFKUaBVNmQJoFkdAoQx+oNutOnV9lChoBmgJaA9DCHDNHf2vmmFAlIaUUpRoFU2sAmgWR0ChD/A+6iCbdX2UKGgGaAloD0MIaMpOP6iKXECUhpRSlGgVTeUCaBZHQKETbSSeRPp1fZQoaAZoCWgPQwg7cqQzMDVQwJSGlFKUaBVNMQJoFkdAoRXhKnNxEXV9lChoBmgJaA9DCIwUysJXgGBAlIaUUpRoFU0nA2gWR0ChGfHTqjagdX2UKGgGaAloD0MIpREz+7w9ZECUhpRSlGgVTUMCaBZHQKEch7eEZix1fZQoaAZoCWgPQwhITiZuFf9cwJSGlFKUaBVNtQJoFkdAoR75Fy7wrnV9lChoBmgJaA9DCDXuzW+YHlPAlIaUUpRoFU1LAmgWR0ChISBxo7FLdX2UKGgGaAloD0MIZ2Ml5llrTcCUhpRSlGgVS+NoFkdAoSJ6FAVwgnV9lChoBmgJaA9DCBYUBmUaGmJAlIaUUpRoFU3FA2gWR0ChJp9i+cpcdX2UKGgGaAloD0MIL6LtmLrRVcCUhpRSlGgVTS8CaBZHQKEpEW1twaR1fZQoaAZoCWgPQwi9GwsKg6JWwJSGlFKUaBVNhQJoFkdAoSssq4H5anV9lChoBmgJaA9DCIv8+iE2DGNAlIaUUpRoFU20AmgWR0ChLxeDOC5FdX2UKGgGaAloD0MIqFFIMitXZ0CUhpRSlGgVTW0CaBZHQKExqNIbwSd1fZQoaAZoCWgPQwiX/5B++wJYwJSGlFKUaBVN7wFoFkdAoTNd2Pkq+nV9lChoBmgJaA9DCKX5Y1obE2NAlIaUUpRoFU3cAmgWR0ChN2vuw5eadX2UKGgGaAloD0MIMKGCwwueZECUhpRSlGgVTbcCaBZHQKE6APYnOSp1fZQoaAZoCWgPQwgIOe//499cwJSGlFKUaBVNLQJoFkdAoTzdLeyiVXV9lChoBmgJaA9DCN7lIr4Tk1rAlIaUUpRoFU3YAWgWR0ChPpin5zo2dX2UKGgGaAloD0MI7zhFR3LbRECUhpRSlGgVTegDaBZHQKFDrOgxrSF1fZQoaAZoCWgPQwgw8UdRZ5tbwJSGlFKUaBVNpQJoFkdAoUYvTgEU03V9lChoBmgJaA9DCJQxPsxePGrAlIaUUpRoFU0EA2gWR0ChSeh11W8zdX2UKGgGaAloD0MIe00PCkpgXcCUhpRSlGgVTUMCaBZHQKFMEXgLqlh1fZQoaAZoCWgPQwjPS8XGvP9TwJSGlFKUaBVN+wFoFkdAoU232Cdz4nV9lChoBmgJaA9DCHrFU4+0AGNAlIaUUpRoFU2oAmgWR0ChUOsMy8BddX2UKGgGaAloD0MInwQ252CJasCUhpRSlGgVTY0DaBZHQKFUqOG0u151fZQoaAZoCWgPQwii68IPzm9hQJSGlFKUaBVNUgJoFkdAoVeyasp5NXV9lChoBmgJaA9DCP3a+uk/xGJAlIaUUpRoFU31AmgWR0ChW0RPfsNUdX2UKGgGaAloD0MI8DZvnJS4ZUCUhpRSlGgVTdsCaBZHQKFfXfBvaUR1fZQoaAZoCWgPQwit3AvMCs9PwJSGlFKUaBVL/mgWR0ChYBGahHskdX2UKGgGaAloD0MIdy/3yVHnVUCUhpRSlGgVTX0DaBZHQKFj+gxJul51fZQoaAZoCWgPQwhClC9oIcxYQJSGlFKUaBVNNANoFkdAoWfewzLwF3V9lChoBmgJaA9DCDs42JsYqFnAlIaUUpRoFU1UAmgWR0Chakwo9cKPdX2UKGgGaAloD0MIjE0rhUCGVUCUhpRSlGgVTTkDaBZHQKFu7Xko4Mp1fZQoaAZoCWgPQwgT1PAtrLJjQJSGlFKUaBVNRgNoFkdAoXNrg4wRG3V9lChoBmgJaA9DCOIBZVOuLGZAlIaUUpRoFU3EAmgWR0ChdftZ/0/XdX2UKGgGaAloD0MIzEHQ0apMVECUhpRSlGgVTYIDaBZHQKF6sEzwc5t1fZQoaAZoCWgPQwg3/G66ZZ1jQJSGlFKUaBVNpAJoFkdAoX2ONgjQiXV9lChoBmgJaA9DCJzCSgUVflFAlIaUUpRoFU1VA2gWR0Chgt9U83dcdX2UKGgGaAloD0MI4lrtYS8mYUCUhpRSlGgVTRADaBZHQKGGat9x6v91fZQoaAZoCWgPQwjDuBtEa+lOwJSGlFKUaBVNTwJoFkdAoYlbSVnmJXV9lChoBmgJaA9DCJepSfAGpGlAlIaUUpRoFU1mAmgWR0Chi8m+CbtrdX2UKGgGaAloD0MIXByVm6hDUsCUhpRSlGgVTT8BaBZHQKGMtIg/1QJ1fZQoaAZoCWgPQwh8KxIT1LZawJSGlFKUaBVNEAJoFkdAoY59ie/Ya3V9lChoBmgJaA9DCKXcfY6PA2pAlIaUUpRoFU1HAmgWR0ChkWw9zOopdX2UKGgGaAloD0MIWyOCcfDaZ0CUhpRSlGgVTVYCaBZHQKGTsJb+tKZ1fZQoaAZoCWgPQwj203/W/DQ3wJSGlFKUaBVNFwJoFkdAoZYGQbMot3V9lChoBmgJaA9DCLiU88Ve6GlAlIaUUpRoFU1yAmgWR0ChmBKUmlZYdX2UKGgGaAloD0MIY9UgzO1FUsCUhpRSlGgVTY0BaBZHQKGZU72criF1fZQoaAZoCWgPQwgz3eukvjdWwJSGlFKUaBVNMwJoFkdAoZvBAdGRWHV9lChoBmgJaA9DCCDQmbSp92PAlIaUUpRoFU3pAWgWR0ChnY3q7iAEdX2UKGgGaAloD0MIweWxZuSrZMCUhpRSlGgVTbECaBZHQKGgHdBSk0t1fZQoaAZoCWgPQwjQCgxZ3ehGwJSGlFKUaBVN6ANoFkdAoaTgwPAfuHV9lChoBmgJaA9DCFq4rMJmJGhAlIaUUpRoFU27AmgWR0ChqIK3EyckdX2UKGgGaAloD0MIa0qyDkdmaUCUhpRSlGgVTXECaBZHQKGqr07r9l51fZQoaAZoCWgPQwhbCHJQwotYQJSGlFKUaBVNJwNoFkdAoa9HSpiqhnV9lChoBmgJaA9DCDs3bcZpxmhAlIaUUpRoFU2KAmgWR0ChsakDZDiPdX2UKGgGaAloD0MIexaE8j5iUsCUhpRSlGgVTWwBaBZHQKGyt9wWFex1fZQoaAZoCWgPQwiFsvD1tS5lQJSGlFKUaBVNWQJoFkdAobXNh1DBuXV9lChoBmgJaA9DCPrPmh9/s1xAlIaUUpRoFU3lAmgWR0ChuNDSXt0FdX2UKGgGaAloD0MIT135LE8TYcCUhpRSlGgVTSoCaBZHQKG6n2FnIyV1fZQoaAZoCWgPQwgAyt+9oxY0QJSGlFKUaBVN6ANoFkdAob/Qgmqo63V9lChoBmgJaA9DCJ7sZkY/c1bAlIaUUpRoFU0YAmgWR0ChwkNfgJkYdX2UKGgGaAloD0MIdHy0OGOsX8CUhpRSlGgVTXICaBZHQKHEsXTEzft1fZQoaAZoCWgPQwiP/pdrUXZhwJSGlFKUaBVNkAJoFkdAocdipBHCoHV9lChoBmgJaA9DCCr+74gKF1fAlIaUUpRoFU2CAWgWR0ChyTxptaZAdX2UKGgGaAloD0MIns+AejM+OsCUhpRSlGgVTRsCaBZHQKHK4pT/ACZ1fZQoaAZoCWgPQwi3fCQlPQhjwJSGlFKUaBVNUANoFkdAoc84HiWE9XV9lChoBmgJaA9DCMkFZ/D3X0fAlIaUUpRoFU0uAmgWR0Ch0Rf6fra/dX2UKGgGaAloD0MI9dkB15V/YUCUhpRSlGgVTbwCaBZHQKHT1RlYlpp1fZQoaAZoCWgPQwjWGd8XlwRZQJSGlFKUaBVNNANoFkdAodjSKHfuTnV9lChoBmgJaA9DCDWXGwx13mJAlIaUUpRoFU3fAmgWR0Ch3ALb5/LDdX2UKGgGaAloD0MIT3Rd+MFtZ0CUhpRSlGgVTc0DaBZHQKHgRGLk0aZ1fZQoaAZoCWgPQwj7yoP0FBZmwJSGlFKUaBVNegNoFkdAoeSWj7ALzHV9lChoBmgJaA9DCLYvoBfunk3AlIaUUpRoFU3oA2gWR0Ch6HIGIKtxdX2UKGgGaAloD0MInNuEe2XRUsCUhpRSlGgVTR8BaBZHQKHqLpmEoOR1fZQoaAZoCWgPQwjlKha/KS9WwJSGlFKUaBVL/2gWR0Ch6u3vphWpdX2UKGgGaAloD0MI6dSVz3J3aECUhpRSlGgVTYsDaBZHQKHt+DJU5uJ1fZQoaAZoCWgPQwjH155ZEoRnwJSGlFKUaBVN4QJoFkdAofHM8NhE0HV9lChoBmgJaA9DCNPddTZk8mhAlIaUUpRoFU0dAmgWR0Ch87p5u63BdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 3335,
"n_steps": 1500,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 100,
"n_epochs": 5,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |