Gugugo-koen-7B-V1.1
Detail repo: https://github.com/jwj7140/Gugugo
Base Model: Llama-2-ko-7b
Training Dataset: sharegpt_deepl_ko_translation.
I trained with 1x A6000 GPUs for 90 hours.
Prompt Template
KO->EN
### νκ΅μ΄: {sentence}</λ>
### μμ΄:
EN->KO
### μμ΄: {sentence}</λ>
### νκ΅μ΄:
There are GPTQ, AWQ, and GGUF support.
https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GPTQ
https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-AWQ
https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GGUF
Implementation Code
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
import torch
repo = "squarelike/Gugugo-koen-7B-V1.1"
model = AutoModelForCausalLM.from_pretrained(
repo,
load_in_4bit=True
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = [stop for stop in stops]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
stop_words_ids = torch.tensor([[829, 45107, 29958], [1533, 45107, 29958], [829, 45107, 29958], [21106, 45107, 29958]]).to("cuda")
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def gen(lan="en", x=""):
if (lan == "ko"):
prompt = f"### νκ΅μ΄: {x}</λ>\n### μμ΄:"
else:
prompt = f"### μμ΄: {x}</λ>\n### νκ΅μ΄:"
gened = model.generate(
**tokenizer(
prompt,
return_tensors='pt',
return_token_type_ids=False
).to("cuda"),
max_new_tokens=2000,
temperature=0.3,
# no_repeat_ngram_size=5,
num_beams=5,
stopping_criteria=stopping_criteria
)
return tokenizer.decode(gened[0][1:]).replace(prompt+" ", "").replace("</λ>", "")
print(gen(lan="en", x="Hello, world!"))
- Downloads last month
- 204
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.