metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2836
- loss:OnlineContrastiveLoss
widget:
- source_sentence: No, it doesn't exist in version 5.3.1.
sentences:
- >-
The `from_dictionary` function requires the following:
- `data` (Union[dict, Mapping]): A collection of keys linked to values
or Python objects.
- `schema` (Schema, optional): If not given, it will be determined from
the Mapping values.
- `metadata` (Union[dict, Mapping], optional): Optional metadata for the
schema (if inferred).
- Stages of photosynthesis
- Version 5.3.1 does not contain it.
- source_sentence: How to make homemade ice cream?
sentences:
- Recipe for making ice cream at home
- >-
How will abolishing Rs. 500 and Rs. 1000 notes affect the real estate
businesses in India?
- How many people live in Japan?
- source_sentence: Best books on World War II
sentences:
- How do I go about getting a visa?
- What steps are involved in performing market analysis?
- Top literature about World War II
- source_sentence: What is the benefit of going Walking every morning?
sentences:
- What are the top workouts for losing weight?
- How large is Japan?
- >-
Bollywood industry doesn't encourage outsiders? For ex outsiders may get
one or at max two chances whereas star kids get multiple chances to
perform?
- source_sentence: >-
The purpose of the training guide is to provide tutorials, how-to guides,
and conceptual guides for working with AI models.
sentences:
- Steps to roast a turkey
- >-
The goal of the training guide is to offer tutorials, how-to
instructions, and conceptual guidance for utilizing AI models.
- Who was the first person to fly across the Atlantic?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8639240506329114
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8522839546203613
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8853333333333334
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8417313098907471
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9021739130434783
name: Cosine Precision
- type: cosine_recall
value: 0.8691099476439791
name: Cosine Recall
- type: cosine_ap
value: 0.9514746651949948
name: Cosine Ap
- type: dot_accuracy
value: 0.8639240506329114
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8522839546203613
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8853333333333334
name: Dot F1
- type: dot_f1_threshold
value: 0.8417313098907471
name: Dot F1 Threshold
- type: dot_precision
value: 0.9021739130434783
name: Dot Precision
- type: dot_recall
value: 0.8691099476439791
name: Dot Recall
- type: dot_ap
value: 0.9514746651949948
name: Dot Ap
- type: manhattan_accuracy
value: 0.8670886075949367
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.227925300598145
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8877005347593583
name: Manhattan F1
- type: manhattan_f1_threshold
value: 8.646421432495117
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.907103825136612
name: Manhattan Precision
- type: manhattan_recall
value: 0.8691099476439791
name: Manhattan Recall
- type: manhattan_ap
value: 0.9520439027006086
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8639240506329114
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5435356497764587
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8853333333333334
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5626147985458374
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9021739130434783
name: Euclidean Precision
- type: euclidean_recall
value: 0.8691099476439791
name: Euclidean Recall
- type: euclidean_ap
value: 0.9514724841898053
name: Euclidean Ap
- type: max_accuracy
value: 0.8670886075949367
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.227925300598145
name: Max Accuracy Threshold
- type: max_f1
value: 0.8877005347593583
name: Max F1
- type: max_f1_threshold
value: 8.646421432495117
name: Max F1 Threshold
- type: max_precision
value: 0.907103825136612
name: Max Precision
- type: max_recall
value: 0.8691099476439791
name: Max Recall
- type: max_ap
value: 0.9520439027006086
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.870253164556962
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8251076936721802
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8935064935064936
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8084052801132202
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8865979381443299
name: Cosine Precision
- type: cosine_recall
value: 0.900523560209424
name: Cosine Recall
- type: cosine_ap
value: 0.9546600352559002
name: Cosine Ap
- type: dot_accuracy
value: 0.870253164556962
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8251076936721802
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8935064935064936
name: Dot F1
- type: dot_f1_threshold
value: 0.808405339717865
name: Dot F1 Threshold
- type: dot_precision
value: 0.8865979381443299
name: Dot Precision
- type: dot_recall
value: 0.900523560209424
name: Dot Recall
- type: dot_ap
value: 0.9546600352559002
name: Dot Ap
- type: manhattan_accuracy
value: 0.870253164556962
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.181171417236328
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8912466843501327
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.181171417236328
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9032258064516129
name: Manhattan Precision
- type: manhattan_recall
value: 0.8795811518324608
name: Manhattan Recall
- type: manhattan_ap
value: 0.9546014712222561
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.870253164556962
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.591425895690918
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8935064935064936
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6190224885940552
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8865979381443299
name: Euclidean Precision
- type: euclidean_recall
value: 0.900523560209424
name: Euclidean Recall
- type: euclidean_ap
value: 0.9546600352559002
name: Euclidean Ap
- type: max_accuracy
value: 0.870253164556962
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.181171417236328
name: Max Accuracy Threshold
- type: max_f1
value: 0.8935064935064936
name: Max F1
- type: max_f1_threshold
value: 9.181171417236328
name: Max F1 Threshold
- type: max_precision
value: 0.9032258064516129
name: Max Precision
- type: max_recall
value: 0.900523560209424
name: Max Recall
- type: max_ap
value: 0.9546600352559002
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_14")
# Run inference
sentences = [
'The purpose of the training guide is to provide tutorials, how-to guides, and conceptual guides for working with AI models.',
'The goal of the training guide is to offer tutorials, how-to instructions, and conceptual guidance for utilizing AI models.',
'Steps to roast a turkey',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8639 |
cosine_accuracy_threshold | 0.8523 |
cosine_f1 | 0.8853 |
cosine_f1_threshold | 0.8417 |
cosine_precision | 0.9022 |
cosine_recall | 0.8691 |
cosine_ap | 0.9515 |
dot_accuracy | 0.8639 |
dot_accuracy_threshold | 0.8523 |
dot_f1 | 0.8853 |
dot_f1_threshold | 0.8417 |
dot_precision | 0.9022 |
dot_recall | 0.8691 |
dot_ap | 0.9515 |
manhattan_accuracy | 0.8671 |
manhattan_accuracy_threshold | 8.2279 |
manhattan_f1 | 0.8877 |
manhattan_f1_threshold | 8.6464 |
manhattan_precision | 0.9071 |
manhattan_recall | 0.8691 |
manhattan_ap | 0.952 |
euclidean_accuracy | 0.8639 |
euclidean_accuracy_threshold | 0.5435 |
euclidean_f1 | 0.8853 |
euclidean_f1_threshold | 0.5626 |
euclidean_precision | 0.9022 |
euclidean_recall | 0.8691 |
euclidean_ap | 0.9515 |
max_accuracy | 0.8671 |
max_accuracy_threshold | 8.2279 |
max_f1 | 0.8877 |
max_f1_threshold | 8.6464 |
max_precision | 0.9071 |
max_recall | 0.8691 |
max_ap | 0.952 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8703 |
cosine_accuracy_threshold | 0.8251 |
cosine_f1 | 0.8935 |
cosine_f1_threshold | 0.8084 |
cosine_precision | 0.8866 |
cosine_recall | 0.9005 |
cosine_ap | 0.9547 |
dot_accuracy | 0.8703 |
dot_accuracy_threshold | 0.8251 |
dot_f1 | 0.8935 |
dot_f1_threshold | 0.8084 |
dot_precision | 0.8866 |
dot_recall | 0.9005 |
dot_ap | 0.9547 |
manhattan_accuracy | 0.8703 |
manhattan_accuracy_threshold | 9.1812 |
manhattan_f1 | 0.8912 |
manhattan_f1_threshold | 9.1812 |
manhattan_precision | 0.9032 |
manhattan_recall | 0.8796 |
manhattan_ap | 0.9546 |
euclidean_accuracy | 0.8703 |
euclidean_accuracy_threshold | 0.5914 |
euclidean_f1 | 0.8935 |
euclidean_f1_threshold | 0.619 |
euclidean_precision | 0.8866 |
euclidean_recall | 0.9005 |
euclidean_ap | 0.9547 |
max_accuracy | 0.8703 |
max_accuracy_threshold | 9.1812 |
max_f1 | 0.8935 |
max_f1_threshold | 9.1812 |
max_precision | 0.9032 |
max_recall | 0.9005 |
max_ap | 0.9547 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,836 training samples
- Columns:
sentence1
,label
, andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 label sentence2 type string int string details - min: 6 tokens
- mean: 15.88 tokens
- max: 66 tokens
- 0: ~45.70%
- 1: ~54.30%
- min: 5 tokens
- mean: 15.82 tokens
- max: 63 tokens
- Samples:
sentence1 label sentence2 What are the symptoms of diabetes?
1
What are the indicators of diabetes?
What is the speed of light?
1
At what speed does light travel?
Eager inventory processing loads the entire inventory list immediately and returns it, while lazy inventory processing applies the processing steps on-the-fly when browsing through the list.
1
Inventory processing that is done eagerly loads the entire inventory right away and provides the result, whereas lazy inventory processing performs the operations as it goes through the list.
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 316 evaluation samples
- Columns:
sentence1
,label
, andsentence2
- Approximate statistics based on the first 316 samples:
sentence1 label sentence2 type string int string details - min: 6 tokens
- mean: 16.37 tokens
- max: 98 tokens
- 0: ~39.56%
- 1: ~60.44%
- min: 4 tokens
- mean: 15.89 tokens
- max: 98 tokens
- Samples:
sentence1 label sentence2 How many planets are in the solar system?
1
Number of planets in the solar system
What are the symptoms of pneumonia?
0
What are the symptoms of bronchitis?
What is the boiling point of sulfur?
0
What is the melting point of sulfur?
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 6warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8066 | - |
0.2247 | 10 | 1.6271 | - | - | - |
0.4494 | 20 | 1.0316 | - | - | - |
0.6742 | 30 | 0.7502 | - | - | - |
0.8989 | 40 | 0.691 | - | - | - |
0.9888 | 44 | - | 0.7641 | 0.9368 | - |
1.1236 | 50 | 0.732 | - | - | - |
1.3483 | 60 | 0.532 | - | - | - |
1.5730 | 70 | 0.389 | - | - | - |
1.7978 | 80 | 0.2507 | - | - | - |
2.0 | 89 | - | 0.6496 | 0.9516 | - |
2.0225 | 90 | 0.4147 | - | - | - |
2.2472 | 100 | 0.2523 | - | - | - |
2.4719 | 110 | 0.1588 | - | - | - |
2.6966 | 120 | 0.1168 | - | - | - |
2.9213 | 130 | 0.1793 | - | - | - |
2.9888 | 133 | - | 0.6431 | 0.9547 | - |
3.1461 | 140 | 0.2062 | - | - | - |
3.3708 | 150 | 0.109 | - | - | - |
3.5955 | 160 | 0.0631 | - | - | - |
3.8202 | 170 | 0.0588 | - | - | - |
4.0 | 178 | - | 0.6676 | 0.9512 | - |
4.0449 | 180 | 0.1865 | - | - | - |
4.2697 | 190 | 0.0303 | - | - | - |
4.4944 | 200 | 0.0301 | - | - | - |
4.7191 | 210 | 0.0416 | - | - | - |
4.9438 | 220 | 0.028 | - | - | - |
4.9888 | 222 | - | 0.6770 | 0.9518 | - |
5.1685 | 230 | 0.0604 | - | - | - |
5.3933 | 240 | 0.0129 | - | - | - |
5.6180 | 250 | 0.0747 | - | - | - |
5.8427 | 260 | 0.0069 | - | - | - |
5.9326 | 264 | - | 0.6755 | 0.9520 | 0.9547 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}