metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2476
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Why do you want to be to president?
sentences:
- Can you teach me how to cook?
- Recipe for baking cookies
- Would you want to be President?
- source_sentence: What is the speed of sound in air?
sentences:
- Velocity of sound waves in the atmosphere
- What is the most delicious dish you've ever eaten and why?
- >-
The `safe` parameter in the `to_spreadsheet` method determines if a
secure conversion is necessary for certain plant attributes to be stored
in a SpreadsheetTable or Row.
- source_sentence: How many countries are in the European Union?
sentences:
- Number of countries in the European Union
- Artist who painted the Sistine Chapel
- >-
The RecipeManager class is employed to oversee the downloading and
unpacking of recipes.
- source_sentence: What is the currency of the United States?
sentences:
- What's the purpose of life? What is life actually about?
- >-
Iter_zip() is employed to sequentially access and yield files inside ZIP
archives.
- Official currency of the USA
- source_sentence: Who wrote the book "To Kill a Mockingbird"?
sentences:
- At what speed does light travel?
- How to set up a yoga studio?
- Who wrote the book "1984"?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8768115942028986
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8267427086830139
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8969696969696969
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8267427086830139
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8809523809523809
name: Cosine Precision
- type: cosine_recall
value: 0.9135802469135802
name: Cosine Recall
- type: cosine_ap
value: 0.9300650297384708
name: Cosine Ap
- type: dot_accuracy
value: 0.8768115942028986
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8267427682876587
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8969696969696969
name: Dot F1
- type: dot_f1_threshold
value: 0.8267427682876587
name: Dot F1 Threshold
- type: dot_precision
value: 0.8809523809523809
name: Dot Precision
- type: dot_recall
value: 0.9135802469135802
name: Dot Recall
- type: dot_ap
value: 0.9300650297384708
name: Dot Ap
- type: manhattan_accuracy
value: 0.8731884057971014
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.953017234802246
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8929663608562691
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.028047561645508
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8848484848484849
name: Manhattan Precision
- type: manhattan_recall
value: 0.9012345679012346
name: Manhattan Recall
- type: manhattan_ap
value: 0.9284992066218356
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8768115942028986
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5886479616165161
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8969696969696969
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5886479616165161
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8809523809523809
name: Euclidean Precision
- type: euclidean_recall
value: 0.9135802469135802
name: Euclidean Recall
- type: euclidean_ap
value: 0.9300650297384708
name: Euclidean Ap
- type: max_accuracy
value: 0.8768115942028986
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.953017234802246
name: Max Accuracy Threshold
- type: max_f1
value: 0.8969696969696969
name: Max F1
- type: max_f1_threshold
value: 9.028047561645508
name: Max F1 Threshold
- type: max_precision
value: 0.8848484848484849
name: Max Precision
- type: max_recall
value: 0.9135802469135802
name: Max Recall
- type: max_ap
value: 0.9300650297384708
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.8768115942028986
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8267427086830139
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8969696969696969
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8267427086830139
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8809523809523809
name: Cosine Precision
- type: cosine_recall
value: 0.9135802469135802
name: Cosine Recall
- type: cosine_ap
value: 0.9300650297384708
name: Cosine Ap
- type: dot_accuracy
value: 0.8768115942028986
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8267427682876587
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8969696969696969
name: Dot F1
- type: dot_f1_threshold
value: 0.8267427682876587
name: Dot F1 Threshold
- type: dot_precision
value: 0.8809523809523809
name: Dot Precision
- type: dot_recall
value: 0.9135802469135802
name: Dot Recall
- type: dot_ap
value: 0.9300650297384708
name: Dot Ap
- type: manhattan_accuracy
value: 0.8731884057971014
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.953017234802246
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8929663608562691
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.028047561645508
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8848484848484849
name: Manhattan Precision
- type: manhattan_recall
value: 0.9012345679012346
name: Manhattan Recall
- type: manhattan_ap
value: 0.9284992066218356
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8768115942028986
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5886479616165161
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8969696969696969
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5886479616165161
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8809523809523809
name: Euclidean Precision
- type: euclidean_recall
value: 0.9135802469135802
name: Euclidean Recall
- type: euclidean_ap
value: 0.9300650297384708
name: Euclidean Ap
- type: max_accuracy
value: 0.8768115942028986
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.953017234802246
name: Max Accuracy Threshold
- type: max_f1
value: 0.8969696969696969
name: Max F1
- type: max_f1_threshold
value: 9.028047561645508
name: Max F1 Threshold
- type: max_precision
value: 0.8848484848484849
name: Max Precision
- type: max_recall
value: 0.9135802469135802
name: Max Recall
- type: max_ap
value: 0.9300650297384708
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_15")
# Run inference
sentences = [
'Who wrote the book "To Kill a Mockingbird"?',
'Who wrote the book "1984"?',
'At what speed does light travel?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8768 |
cosine_accuracy_threshold | 0.8267 |
cosine_f1 | 0.897 |
cosine_f1_threshold | 0.8267 |
cosine_precision | 0.881 |
cosine_recall | 0.9136 |
cosine_ap | 0.9301 |
dot_accuracy | 0.8768 |
dot_accuracy_threshold | 0.8267 |
dot_f1 | 0.897 |
dot_f1_threshold | 0.8267 |
dot_precision | 0.881 |
dot_recall | 0.9136 |
dot_ap | 0.9301 |
manhattan_accuracy | 0.8732 |
manhattan_accuracy_threshold | 8.953 |
manhattan_f1 | 0.893 |
manhattan_f1_threshold | 9.028 |
manhattan_precision | 0.8848 |
manhattan_recall | 0.9012 |
manhattan_ap | 0.9285 |
euclidean_accuracy | 0.8768 |
euclidean_accuracy_threshold | 0.5886 |
euclidean_f1 | 0.897 |
euclidean_f1_threshold | 0.5886 |
euclidean_precision | 0.881 |
euclidean_recall | 0.9136 |
euclidean_ap | 0.9301 |
max_accuracy | 0.8768 |
max_accuracy_threshold | 8.953 |
max_f1 | 0.897 |
max_f1_threshold | 9.028 |
max_precision | 0.8848 |
max_recall | 0.9136 |
max_ap | 0.9301 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8768 |
cosine_accuracy_threshold | 0.8267 |
cosine_f1 | 0.897 |
cosine_f1_threshold | 0.8267 |
cosine_precision | 0.881 |
cosine_recall | 0.9136 |
cosine_ap | 0.9301 |
dot_accuracy | 0.8768 |
dot_accuracy_threshold | 0.8267 |
dot_f1 | 0.897 |
dot_f1_threshold | 0.8267 |
dot_precision | 0.881 |
dot_recall | 0.9136 |
dot_ap | 0.9301 |
manhattan_accuracy | 0.8732 |
manhattan_accuracy_threshold | 8.953 |
manhattan_f1 | 0.893 |
manhattan_f1_threshold | 9.028 |
manhattan_precision | 0.8848 |
manhattan_recall | 0.9012 |
manhattan_ap | 0.9285 |
euclidean_accuracy | 0.8768 |
euclidean_accuracy_threshold | 0.5886 |
euclidean_f1 | 0.897 |
euclidean_f1_threshold | 0.5886 |
euclidean_precision | 0.881 |
euclidean_recall | 0.9136 |
euclidean_ap | 0.9301 |
max_accuracy | 0.8768 |
max_accuracy_threshold | 8.953 |
max_f1 | 0.897 |
max_f1_threshold | 9.028 |
max_precision | 0.8848 |
max_recall | 0.9136 |
max_ap | 0.9301 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,476 training samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type int string string details - 0: ~40.20%
- 1: ~59.80%
- min: 6 tokens
- mean: 16.35 tokens
- max: 98 tokens
- min: 4 tokens
- mean: 16.06 tokens
- max: 98 tokens
- Samples:
label sentence1 sentence2 1
The ImageNet dataset is used for training models to classify images into various categories.
A model is trained using the ImageNet dataset to classify images into distinct categories.
1
No, it doesn't exist in version 5.3.1.
Version 5.3.1 does not contain it.
0
Can you help me with my homework?
Can you do my homework for me?
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 276 evaluation samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 276 samples:
label sentence1 sentence2 type int string string details - 0: ~41.30%
- 1: ~58.70%
- min: 6 tokens
- mean: 15.56 tokens
- max: 87 tokens
- min: 5 tokens
- mean: 15.34 tokens
- max: 86 tokens
- Samples:
label sentence1 sentence2 0
What are the challenges of AI in cybersecurity?
How is AI used to enhance cybersecurity?
1
You can find the SYSTEM log documentation on the main version. Click on the provided link to redirect to the main version of the documentation.
The SYSTEM log documentation can be accessed by clicking on the link which will take you to the main version.
1
What is the capital of Italy?
Name the capital city of Italy
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7876 | - |
0.2564 | 10 | 1.5794 | - | - | - |
0.5128 | 20 | 0.8392 | - | - | - |
0.7692 | 30 | 0.7812 | - | - | - |
1.0 | 39 | - | 0.8081 | 0.9138 | - |
1.0256 | 40 | 0.6505 | - | - | - |
1.2821 | 50 | 0.57 | - | - | - |
1.5385 | 60 | 0.3015 | - | - | - |
1.7949 | 70 | 0.3091 | - | - | - |
2.0 | 78 | - | 0.7483 | 0.9267 | - |
2.0513 | 80 | 0.3988 | - | - | - |
2.3077 | 90 | 0.1801 | - | - | - |
2.5641 | 100 | 0.1166 | - | - | - |
2.8205 | 110 | 0.1255 | - | - | - |
3.0 | 117 | - | 0.7106 | 0.9284 | - |
3.0769 | 120 | 0.2034 | - | - | - |
3.3333 | 130 | 0.0329 | - | - | - |
3.5897 | 140 | 0.0805 | - | - | - |
3.8462 | 150 | 0.0816 | - | - | - |
4.0 | 156 | - | 0.6969 | 0.9301 | 0.9301 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}