fine_tuned_model_7 / README.md
srikarvar's picture
Add new SentenceTransformer model.
73c1092 verified
|
raw
history blame
28.8 kB
metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2871
  - loss:OnlineContrastiveLoss
widget:
  - source_sentence: Stages of photosynthesis
    sentences:
      - The function helps preprocess your entire dataset at once.
      - >-
        You can create an index for your dataset by using
        [Dataset.add_faiss_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index)
        or
        [Dataset.add_elasticsearch_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_elasticsearch_index)
        depending on the system you want to use.
      - What is photosynthesis?
  - source_sentence: Steps to erase internet history
    sentences:
      - How do I delete my browsing history?
      - >-
        Yes, there is a reference section available in πŸ€— Datasets
        documentation. It covers main classes, builder classes, loading methods,
        table classes, logging methods, and task templates.
      - What is the tallest building in New York City?
  - source_sentence: >-
      The `StreamingDownloadManager` class is a download manager that employs
      the "::" separator to traverse (possibly remote) compressed files.
    sentences:
      - What is the role of a business plan in entrepreneurship?
      - >-
        The Hugging Face datasets library's default handler can be disabled to
        prevent double logging by calling the
        `datasets.utils.logging.enable_propagation()` function.
      - >-
        The `StreamingDownloadManager` class is a download manager that uses the
        ”::” separator to navigate through (possibly remote) compressed
        archives.
  - source_sentence: >-
      Using torch.utils.data.DataLoader, you can package the dataset and craft a
      collate function to group the samples into batches.
    sentences:
      - Why does understanding death philosophical?
      - >-
        The `_generate_examples` method is used to access and yield TAR files
        sequentially, and to associate the metadata in `metadata_path` with the
        audio files in the TAR file.
      - >-
        You can wrap the dataset in DataLoader using torch.utils.data.DataLoader
        and create a collate function to collate the samples into batches.
  - source_sentence: Top literature about World War II
    sentences:
      - What is the price of an iPhone 12?
      - Best books on World War II
      - When was the Declaration of Independence signed?
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class dev
          type: pair-class-dev
        metrics:
          - type: cosine_accuracy
            value: 0.9
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.784720778465271
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.926605504587156
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.784720778465271
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8938053097345132
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9619047619047619
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9548853455786228
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.784720778465271
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.926605504587156
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.784720778465271
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8938053097345132
            name: Dot Precision
          - type: dot_recall
            value: 0.9619047619047619
            name: Dot Recall
          - type: dot_ap
            value: 0.9548853455786228
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.896875
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.908977508544922
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9241379310344828
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 10.13671588897705
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8933333333333333
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9571428571428572
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9549673053310541
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6561694145202637
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.926605504587156
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6561694145202637
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8938053097345132
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9619047619047619
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9548853455786228
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.908977508544922
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.926605504587156
            name: Max F1
          - type: max_f1_threshold
            value: 10.13671588897705
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8938053097345132
            name: Max Precision
          - type: max_recall
            value: 0.9619047619047619
            name: Max Recall
          - type: max_ap
            value: 0.9549673053310541
            name: Max Ap
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class test
          type: pair-class-test
        metrics:
          - type: cosine_accuracy
            value: 0.90625
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.8142284154891968
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.929245283018868
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.8142284154891968
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9205607476635514
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9380952380952381
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9556341092519267
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.90625
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.8142284750938416
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.929245283018868
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.8142284750938416
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.9205607476635514
            name: Dot Precision
          - type: dot_recall
            value: 0.9380952380952381
            name: Dot Recall
          - type: dot_ap
            value: 0.9556341092519267
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.903125
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.576812744140625
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9270588235294117
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 9.576812744140625
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9162790697674419
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9380952380952381
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9557652464010216
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.90625
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.609528124332428
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.929245283018868
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.609528124332428
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.9205607476635514
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9380952380952381
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9556341092519267
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.90625
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.576812744140625
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.929245283018868
            name: Max F1
          - type: max_f1_threshold
            value: 9.576812744140625
            name: Max F1 Threshold
          - type: max_precision
            value: 0.9205607476635514
            name: Max Precision
          - type: max_recall
            value: 0.9380952380952381
            name: Max Recall
          - type: max_ap
            value: 0.9557652464010216
            name: Max Ap

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the πŸ€— Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_7")
# Run inference
sentences = [
    'Top literature about World War II',
    'Best books on World War II',
    'What is the price of an iPhone 12?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9
cosine_accuracy_threshold 0.7847
cosine_f1 0.9266
cosine_f1_threshold 0.7847
cosine_precision 0.8938
cosine_recall 0.9619
cosine_ap 0.9549
dot_accuracy 0.9
dot_accuracy_threshold 0.7847
dot_f1 0.9266
dot_f1_threshold 0.7847
dot_precision 0.8938
dot_recall 0.9619
dot_ap 0.9549
manhattan_accuracy 0.8969
manhattan_accuracy_threshold 9.909
manhattan_f1 0.9241
manhattan_f1_threshold 10.1367
manhattan_precision 0.8933
manhattan_recall 0.9571
manhattan_ap 0.955
euclidean_accuracy 0.9
euclidean_accuracy_threshold 0.6562
euclidean_f1 0.9266
euclidean_f1_threshold 0.6562
euclidean_precision 0.8938
euclidean_recall 0.9619
euclidean_ap 0.9549
max_accuracy 0.9
max_accuracy_threshold 9.909
max_f1 0.9266
max_f1_threshold 10.1367
max_precision 0.8938
max_recall 0.9619
max_ap 0.955

Binary Classification

Metric Value
cosine_accuracy 0.9062
cosine_accuracy_threshold 0.8142
cosine_f1 0.9292
cosine_f1_threshold 0.8142
cosine_precision 0.9206
cosine_recall 0.9381
cosine_ap 0.9556
dot_accuracy 0.9062
dot_accuracy_threshold 0.8142
dot_f1 0.9292
dot_f1_threshold 0.8142
dot_precision 0.9206
dot_recall 0.9381
dot_ap 0.9556
manhattan_accuracy 0.9031
manhattan_accuracy_threshold 9.5768
manhattan_f1 0.9271
manhattan_f1_threshold 9.5768
manhattan_precision 0.9163
manhattan_recall 0.9381
manhattan_ap 0.9558
euclidean_accuracy 0.9062
euclidean_accuracy_threshold 0.6095
euclidean_f1 0.9292
euclidean_f1_threshold 0.6095
euclidean_precision 0.9206
euclidean_recall 0.9381
euclidean_ap 0.9556
max_accuracy 0.9062
max_accuracy_threshold 9.5768
max_f1 0.9292
max_f1_threshold 9.5768
max_precision 0.9206
max_recall 0.9381
max_ap 0.9558

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,871 training samples
  • Columns: sentence2, sentence1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence2 sentence1 label
    type string string int
    details
    • min: 5 tokens
    • mean: 20.57 tokens
    • max: 177 tokens
    • min: 6 tokens
    • mean: 20.74 tokens
    • max: 176 tokens
    • 0: ~34.00%
    • 1: ~66.00%
  • Samples:
    sentence2 sentence1 label
    How do I do to get fuller face? How can one get a fuller face? 1
    The DatasetInfo holds the data of a dataset, which may include its description, characteristics, and size. A dataset's information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size. 1
    How do I write a resume? How do I create a resume? 1
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 320 evaluation samples
  • Columns: sentence2, sentence1, and label
  • Approximate statistics based on the first 320 samples:
    sentence2 sentence1 label
    type string string int
    details
    • min: 4 tokens
    • mean: 19.57 tokens
    • max: 135 tokens
    • min: 6 tokens
    • mean: 19.55 tokens
    • max: 136 tokens
    • 0: ~34.38%
    • 1: ~65.62%
  • Samples:
    sentence2 sentence1 label
    Steps to erase internet history How do I delete my browsing history? 1
    How important is it to be the first person to wish someone a happy birthday? What is the right etiquette for wishing a Jehovah Witness happy birthday? 0
    Who directed 'Gone with the Wind'? Who directed 'Citizen Kane'? 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - - 0.8735 -
0.2222 10 1.3298 - - -
0.4444 20 0.8218 - - -
0.6667 30 0.642 - - -
0.8889 40 0.571 - - -
1.0 45 - 0.5321 0.9499 -
1.1111 50 0.4828 - - -
1.3333 60 0.3003 - - -
1.5556 70 0.3331 - - -
1.7778 80 0.203 - - -
2.0 90 0.3539 0.5118 0.9558 -
2.2222 100 0.1357 - - -
2.4444 110 0.1562 - - -
2.6667 120 0.0703 - - -
2.8889 130 0.0806 - - -
3.0 135 - 0.5266 0.9548 -
3.1111 140 0.1721 - - -
3.3333 150 0.1063 - - -
3.5556 160 0.0909 - - -
3.7778 170 0.0358 - - -
4.0 180 0.1021 0.5256 0.9550 0.9558
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}