metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:296
- loss:ContrastiveLoss
widget:
- source_sentence: Biography of Queen Elisabeth II
sentences:
- Biography of Queen Elisabeth I
- What are the ingredients of a pizza?
- When was the Declaration of Independence signed?
- source_sentence: What are ingredients of pizza
sentences:
- How do I reset my password?
- What are the ingredients of a pizza?
- What's the capital of France?
- source_sentence: Japan's population count
sentences:
- What's the population of Japan?
- What is the time now?
- What are the benefits of exercise?
- source_sentence: How many states are in India?
sentences:
- What is the capital of Italy?
- What is the speed of light?
- How many states are in the USA?
- source_sentence: Language spoken by the most people
sentences:
- What is the most spoken language in the world?
- How do I get to the nearest train station?
- Who was the first person to walk on the moon?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9459459459459459
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8864079713821411
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.951219512195122
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8166882395744324
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9069767441860465
name: Cosine Precision
- type: cosine_recall
value: 1
name: Cosine Recall
- type: cosine_ap
value: 0.9896978310027928
name: Cosine Ap
- type: dot_accuracy
value: 0.9459459459459459
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8864079713821411
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.951219512195122
name: Dot F1
- type: dot_f1_threshold
value: 0.8166882991790771
name: Dot F1 Threshold
- type: dot_precision
value: 0.9069767441860465
name: Dot Precision
- type: dot_recall
value: 1
name: Dot Recall
- type: dot_ap
value: 0.9896978310027928
name: Dot Ap
- type: manhattan_accuracy
value: 0.9459459459459459
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 7.30389404296875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.951219512195122
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.542933464050293
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9069767441860465
name: Manhattan Precision
- type: manhattan_recall
value: 1
name: Manhattan Recall
- type: manhattan_ap
value: 0.9896978310027928
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9459459459459459
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.4764680862426758
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.951219512195122
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6043685078620911
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9069767441860465
name: Euclidean Precision
- type: euclidean_recall
value: 1
name: Euclidean Recall
- type: euclidean_ap
value: 0.9896978310027928
name: Euclidean Ap
- type: max_accuracy
value: 0.9459459459459459
name: Max Accuracy
- type: max_accuracy_threshold
value: 7.30389404296875
name: Max Accuracy Threshold
- type: max_f1
value: 0.951219512195122
name: Max F1
- type: max_f1_threshold
value: 9.542933464050293
name: Max F1 Threshold
- type: max_precision
value: 0.9069767441860465
name: Max Precision
- type: max_recall
value: 1
name: Max Recall
- type: max_ap
value: 0.9896978310027928
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9459459459459459
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8864079713821411
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.951219512195122
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8166882395744324
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9069767441860465
name: Cosine Precision
- type: cosine_recall
value: 1
name: Cosine Recall
- type: cosine_ap
value: 0.9896978310027928
name: Cosine Ap
- type: dot_accuracy
value: 0.9459459459459459
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8864079713821411
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.951219512195122
name: Dot F1
- type: dot_f1_threshold
value: 0.8166882991790771
name: Dot F1 Threshold
- type: dot_precision
value: 0.9069767441860465
name: Dot Precision
- type: dot_recall
value: 1
name: Dot Recall
- type: dot_ap
value: 0.9896978310027928
name: Dot Ap
- type: manhattan_accuracy
value: 0.9459459459459459
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 7.30389404296875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.951219512195122
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.542933464050293
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9069767441860465
name: Manhattan Precision
- type: manhattan_recall
value: 1
name: Manhattan Recall
- type: manhattan_ap
value: 0.9896978310027928
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9459459459459459
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.4764680862426758
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.951219512195122
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6043685078620911
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9069767441860465
name: Euclidean Precision
- type: euclidean_recall
value: 1
name: Euclidean Recall
- type: euclidean_ap
value: 0.9896978310027928
name: Euclidean Ap
- type: max_accuracy
value: 0.9459459459459459
name: Max Accuracy
- type: max_accuracy_threshold
value: 7.30389404296875
name: Max Accuracy Threshold
- type: max_f1
value: 0.951219512195122
name: Max F1
- type: max_f1_threshold
value: 9.542933464050293
name: Max F1 Threshold
- type: max_precision
value: 0.9069767441860465
name: Max Precision
- type: max_recall
value: 1
name: Max Recall
- type: max_ap
value: 0.9896978310027928
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-contrastive")
# Run inference
sentences = [
'Language spoken by the most people',
'What is the most spoken language in the world?',
'Who was the first person to walk on the moon?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9459 |
cosine_accuracy_threshold | 0.8864 |
cosine_f1 | 0.9512 |
cosine_f1_threshold | 0.8167 |
cosine_precision | 0.907 |
cosine_recall | 1.0 |
cosine_ap | 0.9897 |
dot_accuracy | 0.9459 |
dot_accuracy_threshold | 0.8864 |
dot_f1 | 0.9512 |
dot_f1_threshold | 0.8167 |
dot_precision | 0.907 |
dot_recall | 1.0 |
dot_ap | 0.9897 |
manhattan_accuracy | 0.9459 |
manhattan_accuracy_threshold | 7.3039 |
manhattan_f1 | 0.9512 |
manhattan_f1_threshold | 9.5429 |
manhattan_precision | 0.907 |
manhattan_recall | 1.0 |
manhattan_ap | 0.9897 |
euclidean_accuracy | 0.9459 |
euclidean_accuracy_threshold | 0.4765 |
euclidean_f1 | 0.9512 |
euclidean_f1_threshold | 0.6044 |
euclidean_precision | 0.907 |
euclidean_recall | 1.0 |
euclidean_ap | 0.9897 |
max_accuracy | 0.9459 |
max_accuracy_threshold | 7.3039 |
max_f1 | 0.9512 |
max_f1_threshold | 9.5429 |
max_precision | 0.907 |
max_recall | 1.0 |
max_ap | 0.9897 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9459 |
cosine_accuracy_threshold | 0.8864 |
cosine_f1 | 0.9512 |
cosine_f1_threshold | 0.8167 |
cosine_precision | 0.907 |
cosine_recall | 1.0 |
cosine_ap | 0.9897 |
dot_accuracy | 0.9459 |
dot_accuracy_threshold | 0.8864 |
dot_f1 | 0.9512 |
dot_f1_threshold | 0.8167 |
dot_precision | 0.907 |
dot_recall | 1.0 |
dot_ap | 0.9897 |
manhattan_accuracy | 0.9459 |
manhattan_accuracy_threshold | 7.3039 |
manhattan_f1 | 0.9512 |
manhattan_f1_threshold | 9.5429 |
manhattan_precision | 0.907 |
manhattan_recall | 1.0 |
manhattan_ap | 0.9897 |
euclidean_accuracy | 0.9459 |
euclidean_accuracy_threshold | 0.4765 |
euclidean_f1 | 0.9512 |
euclidean_f1_threshold | 0.6044 |
euclidean_precision | 0.907 |
euclidean_recall | 1.0 |
euclidean_ap | 0.9897 |
max_accuracy | 0.9459 |
max_accuracy_threshold | 7.3039 |
max_f1 | 0.9512 |
max_f1_threshold | 9.5429 |
max_precision | 0.907 |
max_recall | 1.0 |
max_ap | 0.9897 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 296 training samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~50.68%
- 1: ~49.32%
- min: 4 tokens
- mean: 9.39 tokens
- max: 20 tokens
- min: 6 tokens
- mean: 10.24 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 0
How to improve running speed?
How to train for a marathon?
0
What is the distance of a marathon?
How to train for a marathon?
1
Mona Lisa painter
Who painted the Mona Lisa?
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 74 evaluation samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~47.30%
- 1: ~52.70%
- min: 5 tokens
- mean: 9.18 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 10.15 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 1
Bitcoin's current value
What is the price of Bitcoin?
1
Who found out about gravity?
Who discovered gravity?
1
Language spoken by the most people
What is the most spoken language in the world?
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 2learning_rate
: 3e-05weight_decay
: 0.01num_train_epochs
: 5lr_scheduler_type
: reduce_lr_on_plateauwarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6933 | - |
0.9474 | 9 | - | 0.0182 | 0.9142 | - |
1.0526 | 10 | 0.0311 | - | - | - |
2.0 | 19 | - | 0.0091 | 0.9730 | - |
2.1053 | 20 | 0.0119 | - | - | - |
2.9474 | 28 | - | 0.0090 | 0.9878 | - |
3.1579 | 30 | 0.0074 | - | - | - |
4.0 | 38 | - | 0.0084 | 0.9891 | - |
4.2105 | 40 | 0.005 | - | - | - |
4.7368 | 45 | - | 0.0084 | 0.9897 | 0.9897 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}