ssmits's picture
Adding Evaluation Results
e35a736 verified
|
raw
history blame
7.31 kB
metadata
language:
  - en
license: other
tags:
  - chat
base_model:
  - Qwen/Qwen2.5-72B-Instruct
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
  - name: Qwen2.5-95B-Instruct
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 84.31
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 58.53
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 6.04
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.21
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.61
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 46.85
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ssmits/Qwen2.5-95B-Instruct
          name: Open LLM Leaderboard

Qwen2.5-95B-Instruct

Qwen2.5-95B-Instruct is a Qwen/Qwen2.5-72B-Instruct self-merge made with MergeKit.

The layer ranges chosen for this merge were inspired by a rough estimate of the layer similarity analysis of ssmits/Falcon2-5.5B-multilingual. Layer similarity analysis involves examining the outputs of different layers in a neural network to determine how similar or different they are. This technique can help identify which layers contribute most significantly to the model's performance. In the context of the Falcon-11B model, layer similarity analysis across multiple languages revealed that the first half of the layers were more important for maintaining performance. Additionally, this analysis can be used to more rigidly slice and add extra layers for optimal Next Token Prediction, allowing for possibly a model architecture that's more creative and powerful.

Special thanks to Eric Hartford for both inspiring and evaluating the original model, to Charles Goddard for creating MergeKit, and to Mathieu Labonne for creating the Meta-Llama-3-120B-Instruct model that served as the main inspiration for this merge.

πŸ” Applications

This model is probably good for creative writing tasks. It uses the Qwen chat template with a default context window of 128K.

The model could be quite creative and maybe even better than the 72B model at some tasks.

⚑ Quantized models

To be quantized.

  • GGUF: [Link to GGUF model]
  • EXL2: [Link to EXL2 model]
  • mlx: [Link to mlx model]

πŸ† Evaluation

This model has yet to be thoroughly evaluated. It is expected to excel in creative writing and more but may have limitations in other tasks. Use it with caution and don't expect it to outperform state-of-the-art models outside of specific creative use cases.

Once the model is created and tested, this section will be updated with:

  • Links to evaluation threads on social media platforms
  • Examples of the model's performance in creative writing tasks
  • Comparisons with other large language models in various applications
  • Community feedback and use cases

We encourage users to share their experiences and evaluations to help build a comprehensive understanding of the model's capabilities and limitations.

🧩 Configuration

slices:
- sources:
  - layer_range: [0, 10]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [5, 15]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [10, 20]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [15, 25]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [20, 30]
    model: Qwen/Qwen2.5-72B-Instruct
- sources:
  - layer_range: [25, 80]
    model: Qwen/Qwen2.5-72B-Instruct
dtype: bfloat16
merge_method: passthrough

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ssmits/Qwen2.5-95B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ssmits__Qwen2.5-95B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |37.43|
|IFEval (0-Shot)    |84.31|
|BBH (3-Shot)       |58.53|
|MATH Lvl 5 (4-Shot)| 6.04|
|GPQA (0-shot)      |15.21|
|MuSR (0-shot)      |13.61|
|MMLU-PRO (5-shot)  |46.85|